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The variance ratios were estimated and animal rankings of genomic-polygenic (GP), genomic (G) and
polygenic (P) models were compared for milk yield (MY) and fat yield (FY) in a Thai multibreed dairy
cattle population. The dataset contained monthly records of MY and FY from 600 first-lactation cows from
56 farms in Central Thailand. The mixed model contained herd-year-season, Holstein fraction, heterozy-
gosity of the cow and age at first calving as fixed effects (all models). Random effects were single
nucleotide polymorphisms (SNP; GP and G models), animal polygenic (GP and P models) and the residual.
The GP heritability estimates were higher for MY (0.38) and FY (0.41) than for the P model (0.28 for MY
and 0.30 for FY). The fractions of the additive genetic variance explained by the SNP markers were 50% for
MY and 48% for FY. Rank correlations between GP and G were the highest for both MY and FY (0.99;
p < 0.01). Rank correlations between G and P were the lowest for MY (0.89; p < 0.01) and FY (0.73;
p < 0.01). SNPs from the GeneSeek Genomic Profiler Low-Density (GGP-LD) 9k BeadChip not only
accounted for a sizeable fraction of the additive genomic variance for MY and FY, but also yielded animal
genomic estimated breeding values (EBV) whose rankings were highly correlated with the rankings of
both genomic-polygenic and polygenic EBV. These results indicated that GGP-LD 9k and likely higher
density genotyping chips would help improve the accuracy of prediction and selection in Central Thailand.
Copyright © 2018, Kasetsart University. Production and hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

of dairy farmer efforts to increase milk production have resulted in
importation of Holstein semen and high-percent Holstein sires by

Thailand is tropical and humid throughout the country during
most of the year and the climate of Thailand is under the influence
of seasonal monsoon weather (Thai Meteorological Department,
2014). This country is approximately 513,000 km? of which
46.53% is devoted to agriculture, 31.84% to non-agricultural
endeavors and 21.63% to forests (Office of Agricultural Economics,
2014). Central Thailand has the largest concentration of dairy
farms in an area comprising 26,900 km? and contains approxi-
mately 61% (145,578) of dairy cows on 62% (10,111) of dairy farms,
which produce 64% (1,921,057 kg per day) of the milk produced in
the country (Department of Livestock Development, 2015; Office of
Agricultural Economics, 2015). Thai government policies in support
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the Dairy Farming Promotion Organization (DPO) and the Depart-
ment of Livestock Development (DLD). The dairy cattle population
in Central Thailand is multibreed, with its largest breed component
being Holstein (H), accompanied by various fractions of other
breeds (Brown Swiss, Jersey, Red Dane, Brahman, Red Sindhi,
Sahiwal) and the parents in this population are chosen among
purebred and crossbred Holstein animals resulting in a multibreed
population composed of individuals with a variety of breed com-
positions (Koonawootrittriron et al., 2009). Currently, 90% of the
population is over 75% H with small fractions of other breeds. This
makes the structure of the Thai dairy population substantially
different from dairy populations in other countries.

The main economically important traits in the Thai dairy busi-
ness are milk yield (MY) and fat yield (FY) because they are asso-
ciated directly with the amount of income received by dairy
farmers. Milk composition such as FY has been used as an indicator
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of milk quality and considered for price determination of raw milk
and dairy genetic improvement programs targeting such econom-
ically important traits have been used to select the best animals as
parents of the next generation (Bourdon, 2000). The traditional
genetic improvement for MY and FY in dairy cattle requires pedi-
gree and phenotype information from individual animals. Tradi-
tional estimated breeding values (EBV) for animals are computed
using best linear unbiased prediction (BLUP) procedures that utilize
phenotype and pedigree information from all animals (Goddard
and Hayes, 2007; Goddard et al., 2010; Vitezica et al., 2011).

Currently, single nucleotide polymorphisms (SNP) across the
genome of individual animals can be determined from approxi-
mately 7000 SNPs up to more than 777,000 SNPs (Zhang et al.,
2012). These SNPs provide an additional source of information to
predict the genetic worth of an animal. The combination of geno-
typed SNPs, phenotype, and pedigree for animal evaluation has
resulted in improved accuracies of prediction (Schaeffer, 2006;
Hayes et al., 2009; Lillehammer et al., 2010). The current research
assessed the advantage of utilizing SNP information for genetic
prediction with and without pedigree information in multibreed
dairy cattle from Central Thailand. Thus, the objectives of this study
were: 1) to estimate the variance components, genetic parameters
and fractions of genetic variances accounted by the GeneSeek
Genomic Profile Low-Density (GGP-LD) BeadChip relative to total
genetic variances; and 2) to compare animal rankings using
predicted values from genomic-polygenic, genomic and polygenic
models for milk yield and fat yield in a multibreed dairy cattle
population in Central Thailand.

Materials and methods
Animal care

This research was approved by the Ethics Committee of the
Kasetsart University Institutional Animal Care and Use Committee,
Bangkok, Thailand and animal care and use under the Ethical
Review Board of the Office of National Research Council of Thailand
(ID: ACKU60-AGR-0090).

Data, traits and animal management

The dataset consisted of monthly test-day MY and FY from 600
first-lactation multibreed dairy cows that calved between 2000 and
2013 on 56 Central Thailand farms. These cows were the progeny of
198 sires and 547 dams. Cows, sires and dams in the Thai population
were either purebred H or H crossbred with various amounts of genes
from other breeds. Breeds represented in the Thai dairy population
were Holstein, Brahman, Jersey, Red Dane, Red Sindhi, Sahiwal, and
Thai Native. The H fraction of animals in this population ranged from
46.87% to 100%, and 91% of all animals were at least 75% H.

Cows were provided a concentrated diet for milk production
at a rate of 1 kg of feed (16% protein) per 2 kg of milk. Roughage
consisted mainly of fresh grasses such as Guinea grass (Penicum
maximum), Ruzi grass (Brachiaria ruziziensis), Napier grass (Pen-
nisetum purpureum) and Para grass (Brachiaria mutica). Fresh
grass was limited during the dry season (November to June) due
to dwindling supplies of stored and underground water. Farmers
also fed rice straw and other agricultural by-products (corn
cobs, cassava leaves, corn silage) when available. Cows were kept
in open barns and milked twice a day; once in the morning
(05:00—06:00 h) and once in the afternoon (14:00—15:00 h).
Farmers used a bucket or a pipeline system for milking. Raw milk
was collected in bulk tanks and transported to a dairy coopera-
tive or to a private milk collection center after milking twice a
day (morning and afternoon).

Traits were 305-d first lactation milk yield (MY, kilograms) and
305-d fat yield (FY, kilograms). Test-day MY and milk samples were
taken from each individual cow once a month from calving to drying
off. Milk samples were analyzed for fat percentage and other quality
traits. Monthly test-day fat yields were computed as the product of
fat percentage times test-day milk yield. Monthly test-day milk
yields and fat yields were used to compute MY and FY using the test-
interval method (Sargent et al., 1968; Koonawootrittriron et al.,
2001). Contemporary groups were defined as herd-year-season of
first calving. Calving age was defined as the number of months
between birth date and calving date.

Blood sampling and single nucleotide polymorphisms

Blood samples were collected from the caudal vein (9 mL) and
transported from farm to laboratory at the Faculty of Agriculture of
Kasetsart University, Bangkok, Thailand. Genomic DNA was extracted
from blood samples using a MasterPure™ DNA Purification Kit (Epi-
centre®; Madison, WI, USA). The concentration and purity of DNA per
sample was measured using a NanoDrop 2000 (Thermo Fisher Science
Inc.; Wilmington, DE, USA). DNA purity ratios of absorbance at 260 nm
and 280 nm ranged from 1.8 to 2.0. The DNA concentration was in the
range 9—645 ng/uL. DNA subsamples were dried using a freeze-dry
machine in about 10—12 h. The dried DNA samples were prepared
and transported by airmail from Kasetsart University to GeneSeek
(GeneSeek; Lincoln, NE, USA) for genotyping using a GGP-LD. Only
single nucleotide polymorphisms (SNP) from the 29 autosomes with
call rates > 90% and minor allele frequencies > 0.01 were used in this
research (n = 8257). The number of SNPs per chromosome ranged
from 148 in chromosome 28 to 530 in chromosome 1 (Fig. 1).

Genomic-polygenic and polygenic variance components and
variance ratios

Genomic-polygenic and polygenic variance components for MY
and FY were estimated using the Markov Chain Monte Carlo
(MCMC) procedure of GS3 with option VCE (Legarra et al., 2010).
The genomic-polygenic model included the fixed effects of herd-
year-season, the Holstein fraction of the cow, heterozygosity of
the cow and age at first calving. Random effects were SNP, animal
and the residual. The polygenic model included all the effects of the
genomic-polygenic model, except for SNP random effects.

GS3 requires initial values for additive polygenic variance,
residual variance, and additive SNP variances. Initial values for the
additive polygenic variance and residual variance were estimated
using an average information restricted maximum likelihood
procedure with a model containing only additive polygenic effects
using the ASREML software (Gilmour et al., 2006). Initial values for
additive SNP variances were computed as the ASREML estimate of
the additive polygenic variance divided by 3827 2p;q; (Habier et al.,
2007; Gianola et al., 2009), where p; = probability of allele A, and
g; = probability of allele B.

The genomic-polygenic variance component estimates from GS3
were the additive SNP variances (VSNP), additive polygenic variances
(VAPO) and residual variance (VE). Genomic-polygenic variance
components (additive genomic variances, VAGO; additive polygenic
variances, VAPO; additive total genetic variances, VGTot; phenotypic
variances, PheVarGP) were computed using GS3 (option VCE). Addi-
tive genomic variances were computed as the product of 35237 2p;q;
times VSNP. Total genetic variances were computed as VAGO + VAPO.
Phenotypic variances were computed as VAGO + VAPO + VE.

Polygenic variance component estimates were the additive
polygenic variances (VGPO) and residual variances (VE). Polygenic
variance components were also computed using option VCE of the
MCMC procedure of the GS3 program. Phenotypic variances were
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Fig. 1. Number of single nucleotide polymorphisms (SNPs) in each bovine chromosome.

computed as VAPO + VE. The variance ratios and heritabilities for
MY and FY were computed using the estimated variances.

The estimates and variability of the genomic-polygenic, genomic
and polygenic variance components and genetic parameters in the
population were obtained as the mean and SD, respectively, of
their sample values across all MCMC samples (number of MCMC
samples = 1200).

Genomic-polygenic, genomic and polygenic predictions

The genomic-polygenic, genomic and polygenic predictions for
MY and FY used VAGO, VAPO and VE values computed using the
GS3 option BLUP (Legarra et al., 2010). The genomic-polygenic
predictions were obtained using a genomic-polygenic model.
The genomic predictions were obtained using a genomic model
(a genomic-polygenic model without an animal random effect).
The polygenic predictions were obtained using a polygenic model
(a genomic-polygenic model without an SNP random effect).

Genomic-polygenic EBV (GPEBV) values were computed using
Equation (1):

GPEBV = (fur)(HF) + additive genomic value
+ additive polygenic value (1)

where @y are the regression coefficient estimates for the Holstein

fraction, HF is the Holstein fraction of cows, the additive genomic
8257

value is >~ w;SNP;, where w; is the number of B alleles in locus i,
i-1

ST\JT’i is the BLUP of SNP;, and the additive polygenic value is the BLUP

of the animal random effect from the genomic-polygenic model.

Genomic EBV (GEBV) was computed using Equation (2):

GEBV = (6yr)(HF) + additive genomic value (2)

where fyr are the regression coefficient estimates for the Holstein
fraction, HF is the Holstein fraction of cows and the additive
8257
genomic value is Y~ w;SNP;, where w; is the number of B alleles in
i=1
locus I and ST\IT’,» is the BLUP of SNP; from the genomic model.
Polygenic EBV (PEBV) was computed using Equation (3):

PEBV = (Byr)(HF) + additive polygenic value (3)

where By are the regression coefficient estimates for the Holstein
fraction, HF is the Holstein fraction of cows and the additive
polygenic value is the BLUP of the animal random effect from the
polygenic model.

Animal rankings of BLUP predictions from genomic-polygenic,
genomic and polygenic models were analyzed using Spearman's
rank correlations (SAS, 2003).

Results and discussion

Genomic-polygenic and polygenic variance components for MY
and FY are presented in Table 1. The additive genomic variances from
the GP model were 21544 (SD = 127.96) kg? for FY and 122,763
(SD = 70,598) kg? for MY. The additive polygenic variances from the
GP model were 252.86 (SD = 192.14) kg® for FY and 129,064
(SD = 87,924) kg? for MY. The total genetic variances from the GP
model were 468.31 (SD = 203.84) kg? for FY and 251,828 (SD = 97,589)
kg? for MY. The phenotypic variances from the GP model were 1131.92
(SD = 111.83) kg? for FY and 659,615 (SD = 51,580) kg? for MY. The
additive genetic variances from the P model were 335.17 (SD = 210.10)
kg? for FY and 183,452 (SD = 100,431) kg? for MY. The phenotypic
variances from the P model were 1097.02 (SD = 108.82) kg for FY and
645,573 (SD = 50,627) kg? for MY.

Variance ratios and heritability from GP and P are shown in
Table 2. The GP heritability estimates were 0.38 for MY and 0.41 for
FY. The P heritability estimates were 0.28 for MY and 0.30 for FY.
These P heritabilities were within the range 0.29—0.41 for MY, and
0.29—0.39 for FY in Dutch and Nordic Holstein Friesian populations
(Stoop et al., 2008; Schopen et al., 2009; Gao et al., 2012). The P
heritabilities for MY and FY were lower than in the UK Holstein
Friesian population (Pollott, 2009; Eaglen et al., 2013). The GP
heritability estimates were lower than the range 0.41—0.80 for MY,
and 0.42—0.77 for FY in Dutch and Australian Holstein Friesian
populations (Veerkamp et al., 2010, 2011; Haile-Mariam et al,,
2013). The GP variances and heritabilities were higher than
those of the P model. The GP heritabilities for MY and FY were
slightly higher than the estimates from P models in Australia

Table 1
Posterior means (SD in parentheses) of variance components for milk yield (MY) and
fat yield (FY) from genomic-polygenic and polygenic models.

Variance component Traits

MY (kg?) FY (kg?)
VAGO 122,763 (70,598) 215.44 (127.96)
VAPO 129,064 (87,924) 252.86 (192.14)
VGTot 251,828 (97,589) 468.31 (203.84)

PheVarGP 659,615 (51,580)
VGPO 183,452 (100,431)
PheVarP 645,573 (50,627)

1131.92 (111.83)
335.17 (210.10)
1097.02 (108.82)

VAGO = additive genomic variances, VAPO = additive polygenic variances,
VGTot = total genetic variances, PheVarGP = phenotypic variances from the
genomic-polygenic model, VGPO = additive genetic variances from the polygenic
model, PheVarP = phenotypic variances from the polygenic model.
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Table 2
Posterior means (SD in parentheses) of variance ratios and heritability for milk yield
(MY) and fat yield (FY).

Variance ratio Traits
MY FY
VAGO/VGTot 0.50 (0.23) 0.48 (0.24)
HeritabilityGP 038 (0.13) 0.41 (0.16)
HeritabilityP 0.28 (0.14) 0.30(0.18)
VAGO = additive genomic variances, VGTot total genetic variances,

HeritabilityGP = heritability from genomic-polygenic model, HeritabilityP = heritability
from polygenic model.

(Haile-Mariam et al., 2013), but slightly lower than in the
Netherlands (Veerkamp et al., 2010). Differences between variances
and heritability estimates in the Thai population versus those from
other countries may have been related to the number of SNPs in the
analyses, linkage disequilibrium between SNPs and genes affecting
MY and FY in each population, the size of reference populations, the
statistical models used in each country and the population struc-
ture across countries. The Thai population is multibreed with a
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larger representation of H than from six other breeds (Brahman,
Jersey, Red Dane, Red Sindhi, Sahiwal, Thai Native). In fact, over 80%
of the animals in the Thai population have a Holstein fraction
higher than 75% (Koonawootrittriron et al., 2009; Ritsawai et al.,
2014; Jattawa et al., 2015).

The ratios of the additive genomic variances to the total genetic
variances from the GP model were high for MY (50%) and FY (48%;
Table 2). These percentages indicated that the genomic information
of the GGP-LD 9k BeadChip captured a substantial percentage of the
total genetic variation for MY and FY in this multibreed dairy cattle
population in Central Thailand. The estimates of variances and
heritabilities in this study indicated that it would be feasible to
increase MY and FY using genetic selection under Thai tropical
conditions. Further gains could be achieved by improving man-
agement practices and feeding regimes (such as good quality forage
throughout the year) to meet the needs of cows with high genetic
production ability. Milk production in Central Thailand has been
substantially increased through crossbreeding programs aimed
at improving native and crossbred varieties to Holstein and both
purebred and crossbred Holstein cattle have been selected as
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Fig. 2. Spearman's rank correlation (rs): (A) between genomic-polygenic (GP), genomic (G) estimated breeding value (EBV) model of milk yield (MY); (B) between GP and polygenic
(P) EBV model of MY; (C) G and P estimated breeding value model of MY; (D) GP and G EBV model of fat yield (FY); (E) GP and P EBV model of FY; (F) G and G EBV model of FY, where

all Spearman's rank correlations were significant (P < 0.0001).
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parents of future generations (Koonawootrittriron et al., 2009). This
practice of identifying the best males and females regardless of
breed composition should continue to help increase MY and FY in
future years.

Spearman's rank correlations among the genomic-polygenic,
genomic and polygenic predictions for MY and FY are shown in
Fig. 2. Rank correlations between GP and G were 0.9973 for FY and
0.9977 for MY (p < 0.0001). Rank correlations between GP and P
were 0.7527 for FY and 0.9095 for MY (p < 0.0001). Rank correla-
tions between G and P were 0.7277 for FY and 0.8892 for MY
(p <0.0001). The correlations among GP, G and P were high for MY
and FY. For MY, the rank correlation between GP and G (0.9977;
p < 0.0001) was stronger than the correlations between GP and P
(0.9095; p < 0.0001) and between G and P (0.8892; p < 0.0001).
For FY, the correlation between GP and G (0.9973; p < 0.0001) was
stronger than the correlations between GP and P (0.7527;
p < 0.0001) and between G and P (0.7277; p < 0.0001). These high
correlations indicated the possibility of preselecting young animals
for MY and FY using the G model to reduce the generation interval
and decrease evaluation costs. After cow phenotypes are collected,
final genetic evaluations can be performed using the GP model.

In conclusion, the fractions of additive genomic variances from
the GP model were high, 50% for MY and 48% for FY. The heritability
estimates with the GP model were higher for MY (0.38) and for FY
(0.41) than for the P model MY (0.28) and for FY (0.30). The rank
correlations between GP and G were stronger than those between
GP and P and between G and P. This research indicated that
genomic information from the bovine chip with 8257 SNPs could be
used in addition to phenotypic and pedigree information to
improve prediction accuracies in this multibreed dairy cattle pop-
ulation in Central Thailand.
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