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ABSTRACT  11 

Objective: This research aimed to determine biological pathways and protein-protein interaction (PPI) networks 12 

for 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving (AFC) in the Thai multibreed dairy 13 

population.   14 

Methods: Genotypic information contained 75,776 imputed and actual single nucleotide polymorphisms (SNP) 15 

from 2,661 animals.  Single-step genomic best linear unbiased predictions were utilized to estimate SNP genetic 16 

variances for MY, FY, and AFC.  Fixed effects included herd-year-season, breed regression and heterosis 17 

regression effects. Random effects were animal additive genetic and residual.  Individual SNP explaining at least 18 

0.001% of the genetic variance for each trait were used to identify nearby genes in the NCBI database.  Pathway 19 

enrichment analysis was performed.  The PPI of genes were identified and visualized of the PPI network.   20 

Results: Identified genes were involved in 16 enriched pathways related to MY, FY, and AFC.  Most genes had 21 

two or more connections with other genes in the PPI network.  Genes associated with MY, FY and AFC based 22 

on the biological pathways and PPI were primarily involved in cellular processes.  The percent of the genetic 23 

variance explained by genes in enriched pathways (303) was 2.63% for MY, 2.59% for FY, and 2.49% for AFC. 24 

Genes in the PPI network (265) explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for 25 

AFC.   26 

Conclusion: These sets of SNP associated with genes in the set enriched pathways and the PPI network could be 27 

used as genomic selection targets in the Thai multibreed dairy population.  This study should be continued both 28 

in this and other populations subject to a variety of environmental conditions because predicted SNP values will 29 

likely differ across populations subject to different environmental conditions and changes over time.  30 
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INTRODUCTION  33 

The Thai multibreed dairy population is primarily composed of crossbred animals with over 75% Holstein 34 

(91%) and the remainder comes from various Bos indicus (Red Sindhi, Sahiwal, Brahman, and Thai Native) and 35 

Bos taurus (Brown Swiss, Red Danish, and Jersey) breeds [1].  Recent genome-wide association studies 36 

(GWAS) in Thailand found sets of significant SNP markers from GeneSeek 9K chip associated with genes 37 

affecting lactation characteristics, milk yield, fat yield, and age at first calving that were mostly different from 38 

those found in Bos taurus breeds in temperate regions [2, 3].  Use of low-density in the Thai studies (9K) and 39 

high density in the studies in temperate regions (50K to 770K) may have been largely responsible for these 40 

differences.  Unfortunately, budgetary restrictions have allowed only a small fraction of the animals in the Thai 41 

multibreed dairy population to be genotyped with GeneSeek 80K.  An efficient alternative to increase the 42 

numbers of SNP per animal without increasing the cost of genotyping SNP is genomic imputation.  Jattawa et al. 43 

[4] found that program FImpute was more accurate than Findhap and Beagle software when imputing from 44 

GeneSeek 9K, 20K, and 26K to 80K in the Thai multibreed dairy population.  Thus, imputation with FImpute of 45 

all genotyped animals with low-density chips could help increase the accuracy of estimation of SNP marker 46 

effects and the likelihood of identifying SNP markers associated with genes affecting dairy traits in this 47 

population.  Further, because only a fraction of animals with phenotypes have genotypes, computation of SNP 48 

marker effects and explained genomic variation could be accomplished by utilizing the single-step genomic best 49 

linear unbiased prediction (ssGBLUP) developed at the University of Georgia [5].   50 

GWAS for milk production and reproductive traits in Holstein in temperate regions identified regions 51 

associated with milk yield, fat yield, and age at first calving in all autosomes [6, 7, 8].  Similarly, GWAS in 52 

Thailand found a largely different set of significant SNP distributed across all 29 autosomes and the X 53 

chromosome associated with milk production and reproductive traits in the Holstein upgraded Thai multibreed 54 

dairy population [2, 3].  However, GWAS provide limited information on relationships among genes affecting 55 

quantitative traits.  Analysis of gene networks and biological pathways would provide a more comprehensive 56 

understanding of the sets of genes affecting multiple milk production and reproduction traits in dairy cattle.  57 

Biological pathway research in Holstein indicated that most sets of genes associated with milk production in 58 

these studies were involved in metabolic pathways, fat digestion and absorption, arginine and proline metabolism 59 

and tight junctions [7].  However, sets of genes involved in biological pathways related to milk production may 60 
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be influenced by population structure and selection [8].  As with differences in sets of SNP associated with milk 61 

production and reproduction traits between the multibreed cattle in Thailand and Holstein cattle in temperate 62 

zones [2, 3], biological pathways and gene networks associated with these traits may also differ in Thai 63 

multibreed and purebred Holstein dairy populations.  Thus, the objectives of this study were to determine 64 

biological pathways and protein-protein interaction gene networks associated with milk yield, fat yield, and age 65 

at first calving in the Thai multibreed dairy population under tropical environmental conditions. 66 

 67 

MATERIALS AND METHODS  68 

Animals, management and traits  69 

This research utilized 8,361 first-lactation cows from 810 farms located in the Northern, Northeastern, 70 

Central, Western, and Southern regions of Thailand.  These cows were the progeny of 1,210 sires and 6,992 71 

dams.  Eighty-eight percent of animals in the database were Holstein (H) crossbreds (75% H and above); the 72 

remaining 25% belonged to Other breeds (O) including Jersey, Brown Swiss, Red Danish, Sahiwal, Red Sindhi, 73 

Brahman, and Thai Native.  74 

Cows were housed in open barns where they had access to roughage, concentrate and a mineral supplement.  75 

Green roughage consisted of freshly cut grasses (cut and carry) including Napier grass (Pennisetum purpureum), 76 

Guinea grass (Panicum maximum), Ruzi grass (Brachiaria ruziziensis), and Para grass (Brachiaria mutica).  77 

Cows were fed approximately 30 to 40 kg/d of roughage and 5 to 10 kg/d of concentrate, or equivalently, 1 kg of 78 

concentrate per 2 kg/milk produced.  The concentrate (14 to 22 % of crude protein and 63 to 83% of nitrogen-79 

free extract) was provided twice per day during milking (morning: 4:30 to 7:00 a.m. and afternoon: 2:30 to 4:30 80 

p.m.).  Agricultural byproducts (rice straw, pineapple waste and sweet corn cob or husk), hay, and (or) silage 81 

were used as supplements as green roughage decreased in winter and summer [1].    82 

Traits in this research were 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving (AFC).  83 

Test-day milk yield and fat percentage were collected monthly from individual first-lactation cows between 1989 84 

and 2014.  Test-day fat yield was computed as the product of fat percentage and milk yield.  Subsequently, 85 

monthly test-day milk and fat yields were used to compute MY and FY using the test-interval procedure [9, 10]. 86 

 87 

Genomic DNA and genotypic data 88 

Blood and semen samples were collected from 2,661 animals (89 sires and 2,572 dams) of the Thai 89 

multibreed dairy population.  Genomic DNA was extracted from blood using a MasterPureTM DNA Purification 90 
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kit for blood version II (EPICENTRE® Biotechnologies, Madison, WI, USA) and from semen using a 91 

GenEluteTM Mammalian Genomic DNA Miniprep Kit (Sigma®, Ronkonkoma, NY, USA).   The DNA quality 92 

was assessed with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, USA).  93 

DNA samples from all animals (n = 2,661) were ensured to contain sufficient DNA for genotyping (absorbance 94 

ratio of approximately 1.8 at 260/280 nm and DNA concentration higher than 15 ng/μl).  DNA samples were 95 

genotyped with GeneSeek Genomic Profiler (GGP) 9K, 20K, 26K, and 80K chips (GeneSeek Inc., Lincoln, NE, 96 

USA). 97 

Animals genotyped with GGP9K, GGP20K, and GGP26K were imputed to GGP80K using program 98 

FImpute version 2.2 [4, 11].  The imputed markers were subjected to quality control prior to further analysis.  99 

Quality control consisted of removing imputed markers with call rates lower than 90% and minor allele 100 

frequencies lower than 0.01.  The resulting edited file contained 75,776 SNP markers per genotyped animal. 101 

 102 

Genome-wide association analysis 103 

A GWAS for MY, FY, and AFC was performed using ssGBLUP [5].  Animals with phenotypes and 104 

genotypes as well as animals with only phenotypes were included in this analysis.  A 3-trait genomic-polygenic 105 

model was used to obtain genetic variances for and covariances between MY, FY, and AFC.  Fixed effects 106 

included contemporary group (herd-year-season), breed regression effect (as a linear function of expected O 107 

fraction in each animal, where O = Other breeds, including Brown Swiss, Red Danish, Jersey, Red Sindhi, 108 

Sahiwal, Brahman, and Thai Native), and heterosis regression effect as a linear function of heterozygosity 109 

(expected H fraction in the sire times expected O fraction in the dam plus expected O fraction in the sire times 110 

expected H fraction in the dam).  Random effects were animal additive genetic and residual.  The mean for 111 

random animal additive genetic and residual effects was assumed to be zero.  The variance-covariance matrix 112 

among animal additive genetic effects for MY, FY, and AFC was equal to H⊗Va where H was the genomic-113 

polygenic relationship matrix, Va was variance-covariance matrix among additive genetic effects for these traits, 114 

and ⊗ was the Kronecker product.  Residual variance-covariance matrix was equal to I⊗Ve where I was 115 

identity matrix and Vewas variance-covariance matrix among residual effects.  The H equal to 116 

[
A11 + A12A22

-1 (G22 - A22)A22
-1 G21 A12A22

-1 G22

G22A22
-1 A21 G22

], where A11 was the submatrix of additive relationships between 117 

non-genotyped animals, A12 was the submatrix of additive relationships between genotyped animals, A22
-1   was 118 

the inverse of the matrix of additive genetic relationships between genotyped animals, and G22 was the matrix of 119 
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genomic relationships among genotyped animals [12].  Matrix G22 =  ZZ'/2∑ p
j
(1 - p

j
), where p

j
 was the 120 

frequency of the second allele in locus j and  Z was the incidence matrix of SNP effects whose elements were 121 

defined as zij = (0 - 2p
j
) if the genotype for locus j was homozygous 11, zij = (1 - 2p

j
) if the genotype for locus j 122 

was heterozygous 12 or 21 and zij = (2 - 2p
j
) if the genotype for locus j was homozygous 22.  Matrix G22  was 123 

scaled using the default parameters of the BLUPF90 Family of Programs [13], i.e., the default scaling of matrix 124 

required the mean of the diagonal elements of G22 to be equal to the mean of the diagonal elements of A22 and 125 

the mean of the off-diagonal elements of G22 to be equal to the mean of the off-diagonal elements of A22.   126 

Variance and covariance components for MY, FY, and AFC were estimated using restricted maximum 127 

likelihood procedures and computed via program AIREMLF90 [14] using an average information algorithm.  128 

Program POSTGSF90 was used to calculate the proportion of genetic variance explained by each SNP, additive 129 

SNP marker effect and construct Manhattan plots of percentages of the genetic variance explained by individual 130 

SNP.  The percentage of the genetic variance explained by each SNP was calculated as the ratio of the variance 131 

explained by that SNP divided by the total genetic variance [15].  The predicted value of SNP associated with 132 

genes was calculated as sum of the additive SNP markers effect for each gene. 133 

 134 

Identification of genes associated with MY, FY and AFC 135 

Individual SNP that explained at least 0.001% of the genetic variance for MY, FY, and AFC were selected 136 

to determine potential genes associated with these traits.  The position of these SNP markers in base pairs was 137 

used to locate genes or nearby genes in the UMD Bos taurus 3.1 assembly of the bovine genome at the National 138 

Center for Biotechnology Information (NCBI) using R package Map2NCBI [16].  Only SNP inside or within 139 

2,500 bp of genes in the NCBI database were utilized for the pathway enrichment and protein-protein interaction 140 

(PPI) network analyses. 141 

 142 

Pathway enrichment analysis 143 

Genes associated with MY, FY, and AFC were used to identify biological pathways in Bos taurus at the 144 

Kyoto Encyclopedia of Genes and Genomes database using the ClueGo plugin of Cytoscape [17].  The statistical 145 

test used for the pathway enrichment analysis by ClueGo was a right-sided test based on the hypergeometric 146 

distribution corrected for multiple testing with the Bonferroni step-down method. Significantly enriched 147 

pathways for these traits were defined to be those with P < 0.05.  148 

 149 



6 
 

Protein-protein interaction network analysis 150 

The name of genes for MY, FY, and AFC was used to identify PPI from neighborhood, co-occurrence, gene 151 

fusions, co-expression, experiments, databases, and text mining using program STRING [18].  The STRING 152 

defined PPI as a probabilistic confidence score.  A high confidence score implied that interactions between 153 

proteins from the database could be considered as valid edges in a network.  Thus, only PPI with a high 154 

confidence score (> 0.7) were used to construct the PPI network.  The PPI network was visualized using 155 

Cytoscape [20].  The CytoNCA plugin for Cytoscape was used to analyze the number connections between 156 

genes in the PPI network [20]. 157 

 158 

RESULTS AND DISCUSSION 159 

 160 

Genetic variance explained by individual SNP and chromosomes  161 

The percentage of genetic variance explained by each SNP are shown in Figure 1.  Most SNP markers 162 

(65%) explained less than 0.001% of the genetic variance each and together they accounted for 13% of the 163 

genetic variance.  Conversely, 35% of SNP markers that explained 0.001% or more of the genetic variance and 164 

accounted for the largest fraction (87%) of the total genetic variance for MY, FY, and AFC.  SNP markers were 165 

located inside genes, within 2,500 bp, between 2,500 and 5,000 bp, between 5,000 and 25,000 bp and beyond 166 

25,000 bp of genes in the NCBI database (Supplementary Table S1).  The percent of SNP inside genes or within 167 

25,00 bp of genes explaining at least 0.001% of the genetic variance was 44% for MY, and FY, 43% for AFC, 168 

and accounted for 38% of the genetic variance for these traits.   169 

Numbers of SNP per gene ranged from 1 to 37 for MY, 1 to 25 for FY, and 1 to 29 for AFC (Figure 2).  170 

Seventy one percent of SNP associated with these traits had a one to one correspondence with genes in the NCBI 171 

database indicating that the vast majority of SNP markers in this population pointed to a single gene within the 172 

genome.   173 

Numbers of genes and total genetic variance per chromosome for MY, FY, and AFC identified by SNP 174 

genotypes inside or within 25,00 bp of genes in the NCBI database are shown in Supplementary Table S2.  The 175 

genetic variance explained by each chromosome ranged from 0.66% (chromosome 27) to 2.02% (chromosome 176 

5) for MY, 0.58% (chromosome 27) to 2.09% (chromosome 11) for FY, and 0.58% (chromosome 27) to 2.01% 177 

(chromosome 4) for AFC.  These low percentages of explained genetic variance indicated that MY, FY, and 178 
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AFC were influenced by large numbers of genes accounting for small amounts of genetic variation scattered 179 

throughout the genome.  180 

Figure 3 shows numbers of genes associated with only one trait (yellow), two traits (gray), and all three 181 

traits (white) based on Map2NCBI allocations.  Numbers of single-trait gene associations (861 for MY, 774 for 182 

FY and, 1806 for AFC) were lower than two-trait gene associations (1,851 for MY & FY, 782 for MY & AFC, 183 

and 898 for FY & AFC) and three-trait gene associations (3,436 for MY & FY & AFC).  This indicated that 184 

genes were likely to be involved in multiple-trait associations than single-trait associations.  These associations 185 

offer a biological rationale for the existence of genetic correlations among these traits.  All genes associated with 186 

all three traits were located in the 29 autosomes and the X chromosome.  The percentage of the genetic variance 187 

explained by these genes across all chromosomes was 26.2% for MY, 26.3% for FY, and 24.7% for AFC 188 

(Supplementary Table S3).  These results provide additional evidence for these three quantitative traits (MY, FY, 189 

and AFC) to be determined by sets of genes spread across the genome in the Thai multibreed [2, 3] and Holstein 190 

populations [7]. 191 

 192 

Pathway enrichment analysis 193 

Enriched pathways were classified into four categories: cellular processes, nervous system, digestive system, 194 

and environment adaptation; Table 1). The genetic variance explained by the genes involved in these 16 195 

significantly enriched pathways was 2.63% for MY, 2.59% for FY, and 2.49% for AFC (Table 1).  The total 196 

predicted value of the SNP associated with these genes (as deviations from the second allele at each locus) were  197 

-5.0430 for MY, -0.1573 for MY, and 0.0077 for AFC (Table 2).  These predicted SNP values indicated that the 198 

second allele at each locus had a larger effect than the first allele at most loci for MY and FY, and that the 199 

opposite occurred for AFC. 200 

 201 

Cellular processes 202 

Cellular process pathways related to cell proliferation, differentiation, migration, survival and apoptosis are 203 

essential for physiological changes in the ovarian follicle and mammary gland [21]. Therefore, cellular processes 204 

pathways contained the largest number of genes (266) and accounted for the largest percentage of the genetic 205 

variance for MY (2.24%), FY (2.29%), and AFC (2.12%) of all categories of significantly enriched pathways 206 

(Table 1).  The sum of the predicted values of the SNP associated genes in enriched cellular pathways were  207 
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-3.7513 for MY, -0.1524 for MY, and 0.0128 for AFC (Table 2), indicating that allele 2 at each locus had a 208 

larger effect than allele 1 for MY and FY, but a smaller effect than allele 1 for AFC.   209 

Ovarian follicle and mammary gland development are influenced by the calcium-signaling pathway, which 210 

in turn is regulated by growth factors through changes in the concentration of free calcium ions (Ca2+).  211 

Specifically, Ca2+ acts as an activator in the mitogen-activated protein kinase (MAPK) signaling pathway in 212 

ovarian follicle and mammary gland cells [22].  The MAPK links extracellular signals to the machinery that 213 

controls many fundamental cellular processes such as cell inflammation, proliferation, metabolism, motility, and 214 

apoptosis [23].  Extracellular signal-regulated kinase 5, a member of the MAPK family, mediates the production 215 

of prolactin [24], a regulator in the development of the mammary gland.  The MAPK signaling pathway was 216 

found to be essential for the development of ovarian follicles in heifers [21] and the mammary gland during 217 

lactation in Holstein [6, 24] and Jersey [6].  The MAPK pathway is regulated by proteins from three associated 218 

pathways: Ras-related protein 1 from the Rap1 signaling pathway 219 

(http://www.genome.jp/dbgetbin/www_bget?pathway:bta04015), Ras proteins from the Ras signaling pathway 220 

(http://www.genome.jp/dbget-bin/www_bget?pathway:bta04014), and Wnt proteins from the Wnt signaling 221 

pathway (http://www.genome.jp/dbget-bin/www_bget?pathway:bta04310).   222 

Phospholipase D from the phospholipase D signaling pathway is an essential enzyme for the production of 223 

phosphatidic acid (http://www.genome.jp/dbget-bin/www_bget?pathway:bta04310), a key intermediate in milk 224 

fat synthesis during lactation [25].  The Focal adhesion and Gap junction pathways receive and send signals that 225 

affect the motility, proliferation, differentiation, metabolic transport, apoptosis, and tissue homeostasis of ovarian 226 

follicle and mammary gland cells [21]. The cyclic guanosine monophosphate from the cGMP-PKG signaling 227 

pathway involved in the activation and regulation of protein kinase G in smooth muscle cells to promote their 228 

relaxation (http://www.genome.jp/dbget-bin/www_bget?pathway:bta04022).  The ceramide and sphingosine-1-229 

phosphate from the sphingolipid signaling pathway acts an as a regulator of cell responses to stress 230 

(http://www.genome.jp/dbget-bin/www_bget?pathway:bta04071).  The oxytocin hormone (oxytocin signaling 231 

pathway), produced by the hypothalamus, stimulates the contraction of mammary gland myoepithelial cells, 232 

causing milk to be ejected into the ducts, and cisterns during milking (http://www.genome.jp/dbget-233 

bin/www_bget?pathway:bta04921). 234 

Cellular processes influenced MY, FY, and AFC through a large number of genes located in multiple 235 

pathways, each having a small effect and explaining a small percentage of genetic variation for these traits.  236 

However, the combined effect of all genes in all enriched cellular pathways explained a noticeable amount of 237 

http://www.genome.jp/dbgetbin/www_bget?pathway:bta04015
http://www.genome.jp/dbget-bin/www_bget?pathway:bta04014
http://www.genome.jp/dbget-bin/www_bget?pathway:bta04310
http://www.genome.jp/dbget-bin/www_bget?pathway:bta04310
http://www.genome.jp/dbget-bin/www_bget?pathway:bta04022
http://www.genome.jp/dbget-bin/www_bget?pathway:bta04071
http://www.genome.jp/dbget-bin/www_bget?pathway:bta04921
http://www.genome.jp/dbget-bin/www_bget?pathway:bta04921
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genetic variation.  Therefore, the combined effect of all cellular processes for MY, FY, and AFC could 238 

potentially be considered as a functional genomic selection target within each trait in this population. 239 

 240 

Nervous system 241 

The nervous system pathways include glutamatergic synapse, GABAergic synapse, and dopaminergic 242 

synapse pathways involved in brain remodeling. There were 70 genes in these three pathways, and they together 243 

explained 0.78% of the genetic variance for MY, 0.66% for FY, and 0.78% for AFC (Table 1), and their 244 

associated SNP had a total predicted value of -4.1918 for MY, -0.0938 for FY, and 0.0039 for AFC (Table 2).  245 

These three pathways are involved in the onset of puberty, which in turn determines AFC.  Changes in the 246 

concentration of gonadotropin-releasing hormone (GnRH) trigger of the onset of puberty.  Glutamate from the 247 

glutamatergic synapse pathway and gamma-aminobutiyric acid from the GABAergic synapse pathway stimulate 248 

the production of GnRH whereas dopamine from the dopaminergic synapse inhibits it [26, 27].  The GnRH 249 

stimulates the secretion of gonadotropins from the pituitary gland (luteinizing and follicle-stimulating hormones) 250 

involved in the development of follicles, ovulation and the production of estrogen and progesterone.  Fortes et al. 251 

[28] provided evidence for the involvement of genes from the glutamatergic synapse and GABAergic synapse 252 

pathways in the attainment of puberty in beef cattle. 253 

   254 

Digestive system 255 

The only significant pathway in the digestive system category was the pancreatic secretion pathway.  This 256 

pathway was 27 genes and they together explained 0.27% of the genetic variance for MY, 0.29% for FY, and 257 

0.32% for AFC (Table 1), and the total predicted value of the associated SNP were -0.9985 for MY, -0.0260 for 258 

FY and -0.0006 for AFC (Table 2).  The digestive system pathway was also found to be associated with milk 259 

production traits in Holstein [7].  Pancreatic enzymes (lipases, amylases, proteases) from the pancreatic secretion 260 

pathway are important for the digestion and absorption of nutrients (carbohydrates, proteins, fats, vitamins) in 261 

the small intestine.  Thus, genes involved in the pancreatic pathway likely influenced differences in MY, FY, and 262 

AFC among animals in the Thai multibreed dairy population.  Heifers that digested and absorbed nutrients more 263 

efficiently would be expected to have faster growth rates, achieve puberty earlier, have higher conception rates 264 

and produce more milk than less efficient heifers.  Thus, heifers in the Thai multibreed dairy population that 265 

digested and absorbed nutrients from local roughages, concentrate and byproducts of agricultural efficiently 266 

likely had lower AFC than less efficient heifers. 267 
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Environmental adaptation 268 

The circadian entrainment pathway was the only significant pathway in the environmental adaptation 269 

category.  This pathway contained 30 genes that explained 0.38% of the genetic variance for MY, 0.36% for FY, 270 

and 0.37% for AFC (Table 1), and the sum of the predicted values of the SNP associated with these genes was -271 

1.0546 for MY, -0.0425 for FY, and -0.0020 for AFC (Table 2).  The circadian entrainment pathway is important 272 

for animal adaptation to number of daylight hours, temperature and humidity [29].  The cyclic adenosine 273 

monophosphate (cAMP) response element-binding protein from the circadian entrainment pathway regulates the 274 

circadian clock (http://www.genome.jp/dbget-bin/www_bget?pathway:bta04713).  The circadian clock is 275 

influenced by the length of photoperiod [30], which in turn influences the activity of multiple hormones 276 

(estrogen, progesterone, placental lactogen, prolactin, leptin, cortisol) that affect metabolites (glucose, amino 277 

acids, free fatty acids, triglycerides) received by cells of the mammary gland [31].  Dairy cows in Thailand are 278 

exposed directly to day-length changes because farmers house cows in open barns.  Thus, it is not surprising that 279 

genes involved in the circadian entrainment pathway explained a significant portion of the genetic variation for 280 

MY and FY in the Thai multibreed dairy population. 281 

 282 

Protein-protein interaction network analysis 283 

The PPI network for MY, FY, and AFC contained 265 nodes (i.e., genes) connected via 1,158 edges (Figure 284 

4).  Approximately 90% of the genes had two or more connections (Figure 5).  The preponderance of multiple 285 

interactions among genes in the PPI network indicated that this was a highly interconnected network where most 286 

genes affected the expression of other genes relevant to MY, FY, and AFC.  The number of connections per node 287 

ranged from 1 to 44 and the number of pathways fluctuated between 1 and 15 (Supplementary File S1).  The PPI 288 

network for MY, FY, and AFC showed a dense center with highly interconnected genes (Figure 4). Genes in the 289 

PPI network explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for AFC 290 

(Supplementary File S1).  Thus, genes in the PPI network explained an average of 86.3% of the genetic variation 291 

as genes present in significantly enriched pathways (86.7% for MY, 87.2% for FY, and 85.2% for AFC).  The 292 

sum of the predicted SNP values of the 265 genes in the PPI network was -5.6150 for MY, -0.1404 for FY, and 293 

0.0067 for AFC (Supplementary File S2).  As with explained genetic variances, these sums of predicted values 294 

for PPI genes were similar to those obtained for the 303 genes in the significantly enriched pathways (Table 2).  295 

All genes in the PPI network were also involved in one or more enriched pathways in Table 1.  Thus, the 265 296 

genes in the PPI network were a subset of the 303 genes in the set of enriched pathways, meaning that 87.5 of 297 

http://www.genome.jp/dbget-bin/www_bget?pathway:bta04713
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enriched pathway genes were represented in the PPI network.  Thus, the 14% lower amount of genetic variation 298 

explained by PPI genes was due to a 12.5% lower number of genes than those present in the enriched pathways 299 

in Table 1.  300 

Figure 6 show a subset of the most represented genes in the PPI network for MY, FY, and AFC (16 genes 301 

with a minimum of 22 connections and 1 pathway).  The PRKCB gene had the largest number of significantly 302 

enriched pathways for MY, FY, and AFC (14) and accounted for 0.012% of the genetic variance for MY, 303 

0.009% for FY and 0.016% for AFC (Supplementary File S1).  This gene participated in 9 biological process 304 

pathways, 3 nervous system pathways, digestive system pathway and environmental adaptation pathway.  305 

PRKCB codes for protein kinase C beta that is involved in diverse cellular signaling pathways 306 

(http://www.genecards.org/cgi-bin/carddisp.pl?gene=PRKCB&keywords=PRKCB).  Further, PRKCB is also 307 

involved in the circadian entrainment pathway.  This pathway contributes to the adaptation of organisms to their 308 

environment [29].  A positive influence of PRKCB on body temperature regulation during climate stress was 309 

reported in Angus and Simmental cattle [32].  Higher milk yield and fat percentages were observed in Holstein 310 

that were better adapted to climatic heat stress [33].  The predicted value of the set of SNP associated with 311 

PRKCB was 0.226 for MY, 0.005 for FY, and -0.002 for AFC (Supplementary File S2).  These predicted SNP 312 

values indicate that the second PRKCB allele would result in higher MY and FY as well as shorter AFC in cows 313 

from the Thai multibreed dairy population, whereas the first PRKCB allele would have the opposite effect. 314 

The PLCB1, PLCB4, ADCY2, ADCY8, CAMK2B, CAMK2D, MAPK11, MAPK14, EGFR, GRB2, FYN, and 315 

ITGB5 genes were involved in 12 significantly enriched pathways and accounted for 0.126% of the genetic 316 

variance for MY, 0.109% for FY, and 0.197% for AFC (Supplementary File S1).  The predicted values of the set 317 

of SNP associated with these genes was -0.739 for MY, -0.026 for FY, and 0.001 for AFC.  These predicted SNP 318 

values indicated that the subset of 16 PPI second alleles would decrease MY, FY, and increase AFC, whereas the 319 

subset of 16 PPI first alleles would increase MY and FY, but decrease AFC.  These genes participated in 8 320 

cellular process pathways (such as MAPK signaling, Ras signaling, Wnt signaling) related to the development of 321 

ovarian follicles and cells from the mammary gland [6, 21]. PLCB1 and PLCB4 code for phospholipase C beta 1 322 

to 4 that function as signal transducers for the transmission of extracellular signals to multiple intracellular 323 

targets (http://www.genecards.org/cgi-bin/carddisp.pl?gene=PLCB1&keywords=PLCB1; 324 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=PLCB4&keywords=PLCB4). ADCY2 and ADCY8 code for 325 

adenylyl cyclase type 2 and 8 that act as catalysts for the formation of cAMP which is involved in many cellular 326 

processes (http://www.genecards.org/cgi-bin/carddisp.pl?gene=ADCY2&keywords=ADCY2; 327 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=PRKCB&keywords=PRKCB
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PLCB1&keywords=PLCB1
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PLCB4&keywords=PLCB4
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ADCY2&keywords=ADCY2
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http://www.genecards.org/cgi-bin/carddisp.pl?gene=ADCY8&keywords=ADCY8). CAMK2B and CAMK2D 328 

code for calcium/calmodulin-dependent protein kinases that function as mediators of calcium signaling in cells 329 

(http://www.genecards.org/cgi-bin/carddisp.pl?gene=CAMK2B&keywords=CAMK2B; 330 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=CAMK2D&keywords=CAMK2D). MAPK11 and MAPK14 331 

code for p38 mitogen-activated protein kinases 11 to 14 that function as mediators of the cellular response to 332 

external signals [34]. EGFR codes for epidermal growth factor receptor that act as a receptor for the growth 333 

factor (http://www.genecards.org/cgi-bin/carddisp.pl?gene=EGFR&keywords=EGFR). GRB2 codes for a growth 334 

factor receptor-bound protein that functions as a signal transducer (http://www.genecards.org/cgi-335 

bin/carddisp.pl?gene=GRB2&keywords=GRB2). FYN codes for protein-tyrosine kinase that acts as an activator 336 

of molecular signals (http://www.genecards.org/cgi-bin/carddisp.pl?gene=FYN&keywords=FYN). ITGB5 codes 337 

for integrin beta type 5 that functions as a receptor for fibronectin (http://www.genecards.org/cgi-338 

bin/carddisp.pl?gene=ITGB5&keywords=ITGB5), which regulates cell proliferation and differentiation during 339 

the development of ovarian follicles and mammary gland cells. 340 

The GNG2, GNGT1, and GNAO1 genes were involved in 6 significantly enriched pathways and accounted 341 

for 0.040% of the genetic variance for MY, 0.027% for FY, and 0.020% for AFC (Supplementary File S1).  The 342 

predicted values of the set of SNP associated with these genes were -0.177 for MY, 0.001 for FY, and -0.002 for 343 

AFC (Supplementary File S2).  Thus, the combined effect of the three second alleles from these genes would 344 

decrease MY, increase FY, and decrease AFC, and the set of first alleles of these genes would have the opposite 345 

effect.  These three genes involved in the glutamatergic, GABAergic and dopaminergic synapse pathways.  346 

These three pathways are involved in the onset of puberty [28]. Lastly, GNAO1 participates in the development 347 

of ovarian follicles [21].   348 

Pathway enrichment and PPI network analyses indicated that MY, FY, and AFC of animals in the Thai 349 

multibreed dairy population were influenced by sets of genes that were important for cellular processes, nervous 350 

and digestive systems and environmental adaptation.  Cellular processes were involved with the largest number 351 

of biological pathways and PPI among genes associated with MY, FY, and AFC.  This likely occurred because 352 

cellular processes are important for fundamental cell activities related to the development of cells from the 353 

mammary gland and the development of ovarian follicles.  Although individual genes or biological pathways 354 

explained a small fraction of the genetic variance for MY, FY, and AFC, the combined effect of all genes in all 355 

enriched biological pathways and the PPI network explained a substantially larger amount of the genetic variance 356 

for these traits.  Thus, the set of SNP associated with the enriched pathways and the PPI network in this study 357 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=ADCY8&keywords=ADCY8
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CAMK2B&keywords=CAMK2B
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CAMK2D&keywords=CAMK2D
http://www.genecards.org/cgi-bin/carddisp.pl?gene=EGFR&keywords=EGFR
http://www.genecards.org/cgi-bin/carddisp.pl?gene=GRB2&keywords=GRB2
http://www.genecards.org/cgi-bin/carddisp.pl?gene=GRB2&keywords=GRB2
http://www.genecards.org/cgi-bin/carddisp.pl?gene=FYN&keywords=FYN
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ITGB5&keywords=ITGB5
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ITGB5&keywords=ITGB5
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could be considered as specific genomic selection targets to help increase MY, FY, and decrease AFC in the 358 

Thai multibreed dairy population.  However, because the amount of explained genetic variation for each trait was 359 

a minor fraction of their total, these studies need to continue with the ultimate goal of accounting for most of the 360 

genetic variation due to biological processes in the Thai multibreed dairy population.  It should be kept in mind 361 

that size and direction of the predicted SNP values here will likely differ in other dairy populations due to breed 362 

composition and environmental conditions (climate, management, nutrition, and health care) and will also likely 363 

differ over time as population characteristics and environmental conditions change. 364 
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Table 1. Percent of genetic variance for milk yield (MY), fat yield (FY) and age at first calving (AFC) explained by SNP located inside or within 2500 bp of genes present in 452 

significantly enriched pathways. 453 

Category Pathway P-value Number of genes (n) 
Genetic variance (%) 

MY FY AFC 

Cellular processes 
 

 266 2.2408 2.2867 2.1220 
 

Rap1 signaling 8.9 × 10-8 63 0.5113 0.6292 0.6437 
 

Calcium signaling 1.3 × 10-7 58 0.5018 0.5157 0.5381 
 

Phospholipase D signaling 2.8 × 10-6 47 0.4691 0.4361 0.4657 
 

Focal adhesion 1.6 × 10-5 55 0.4087 0.3868 0.4621 
 

MAPK signaling 0.0002 62 0.4847 0.523 0.4807  
Ras signaling 0.0075 55 0.3982 0.4333 0.4639  
Wnt signaling 0.0077 38 0.3062 0.3016 0.2848  
cGMP-PKG signaling 0.0085 41 0.4702 0.483 0.4668  
Sphingolipid signaling 0.014 32 0.2295 0.2561 0.3181  
Oxytocin signaling 0.016 38 0.3528 0.3538 0.376  
Gap junction 0.021 26 0.3223 0.2973 0.3667 

Nervous system 
 

 70 0.7829 0.6567 0.7825  
Glutamatergic synapse 1.9 × 10-8 42 0.4857 0.4409 0.4886 

 
Dopaminergic synapse 0.0036 36 0.4004 0.3415 0.4037  
GABAergic synapse 0.011 26 0.3182 0.2633 0.2692 

Digestive system 
 

 27 0.2748 0.2902 0.3216  
Pancreatic secretion 0.03 27 0.2748 0.2902 0.3216 

Environmental adaptation 
 

 30 0.3818 0.3593 0.3672  
Circadian entrainment 0.0018 30 0.3818 0.3593 0.3672 

Total 
 

 303 2.6282 2.5916 2.4893 

 454 

455 
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Table 2. Predicted value of SNP located inside or within 2500 bp of genes associated with milk yield (MY), fat yield (FY) and age at first calving (AFC) present in 456 

significantly enriched pathways. 457 

 458 

Category Pathway P-value Number of genes (n) 
Predicted SNP value 

MY FY AFC 

Cellular processes   
 

266 -3.7513 -0.1524 0.0128 
 

Rap1 signaling 8.9 ×10-8 63 -0.9683 -0.0715 0.0036 
 

Calcium signaling 1.3 × 10-7 58 -2.5956 -0.0520 0.0005 
 

Phospholipase D signaling 2.8 ×10-6 47 -2.7299 -0.0919 0.0072 
 

Focal adhesion 1.6 × 10-5 55 -3.5352 -0.0795 -0.0027 
 

MAPK signaling 0.0002 62 -0.0853 -0.0382 0.0033 
 

Ras signaling 0.0075 55 -1.1262 -0.0448 0.0025 
 

Wnt signaling 0.0077 38 -0.2874 -0.0133 0.0017 
 

cGMP-PKG signaling 0.0085 41 -0.5336 -0.0534 0.0037 
 

Sphingolipid signaling 0.014 32 0.5767 0.0287 0.0056 
 

Oxytocin signaling 0.016 38 -0.9332 -0.0438 -0.0022 
 

Gap junction 0.021 26 -1.0156 -0.0477 0.0017 

Nervous system   
 

70 -4.1918 -0.0938 0.0039 
 

Glutamatergic synapse 1.9 × 10-8 42 -2.0444 -0.0804 -0.0032 
 

Dopaminergic synapse 0.0036 36 -1.2675 -0.0328 0.0002 
 

GABAergic synapse 0.011 26 -2.5585 -0.0434 0.0041 

Digestive system   
 

27 -0.9985 -0.0260 -0.0006 
 

Pancreatic secretion 0.03 27 -0.9985 -0.0260 -0.0006 

Environmental adaptation   
 

30 -1.0546 -0.0425 -0.0020 
 

Circadian entrainment 0.0018 30 -1.0546 -0.0425 -0.0020 

Total     303 -5.0430 -0.1573 0.0077 

 459 



 
 

 460 

Figure 1. Manhattan plot of the percent of the genetic variance for milk yield, fat yield and age at first calving 461 

explained by each SNP. The red line is the threshold for SNP accounting for more than 0.001% of the genetic 462 

variance for these traits.  463 



 
 

 464 

Figure 2. Distribution of genes associated with milk yield, fat yield and age at first calving by number of SNP 465 

per gene.  466 



 
 

 467 

Figure 3. Number genes associated with one (yellow), two (gray) and three (white) traits in the Thai multibreed 468 

population (MY = milk yield, FY = fat yield, AFC = age at first calving).  469 



 
 

 470 

Figure 4. Protein-protein interaction (PPI) network of genes involved in significant pathways.  Green nodes 471 

represent genes with large numbers of connections with other genes in the PPI network.  472 



 
 

 473 

Figure 5. Distribution of genes associated with milk yield, fat yield and age at first calving by number of 474 

connections in the protein-protein interaction network.  475 



 
 

 476 

Figure 6. Genes with large numbers of connections in the protein-protein interaction network of the Thai 477 

multibreed population. 478 


