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Summary
The aim of this paper was to develop statistical models to estimate individual

breed composition based on the previously proposed idea of regressing discrete

random variables corresponding to counts of reference alleles of biallelic molecu-

lar markers located across the genome on the allele frequencies of each marker in

the pure (base) breeds. Some of the existing regression-based methods do not

guarantee that estimators of breed composition will lie in the appropriate parame-

ter space, and none of them account for uncertainty about allele frequencies in the

pure breeds, that is, uncertainty about the design matrix. To overcome these limi-

tations, we proposed two Bayesian generalized linear models. For each individual,

both models assume that the counts of the reference allele at each marker locus

follow independent Binomial distributions, use the logit link and pose a Dirichlet

prior over the vector of regression coefficients (which corresponds to breed com-

position). This prior guarantees that point estimators of breed composition such as

the posterior mean pertain to the appropriate space. The difference between these

models is that model termed BIBI does not account for uncertainty about the

design matrix, while model termed BIBI2 accounts for such an uncertainty by

assigning independent Beta priors to the entries of this matrix. We implemented

these models in a data set from the University of Florida’s multibreed Angus-

Brahman population. Posterior means were used as point estimators of breed com-

position. In addition, the ordinary least squares estimator proposed by Kuehn

et al. (2011) (OLSK) was also computed. BIBI and BIBI2 estimated breed com-

position more accurately than OLSK, and BIBI2 had a 7.69% improvement in

accuracy as compared to BIBI.
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1 | INTRODUCTION

Due to the benefits of heterosis effects (Dickerson, 1973),
cross-breeding is commonly implemented in breeding pro-
grammes of many livestock and plants production systems.
For example, in bovine production systems (dairy and beef)
in tropical and subtropical regions of the world, most of
the animals are cross-bred (Burrow & Prayaga, 2004; Elzo
& Famula, 1985). In animal or plants production systems
using hybrid individuals, knowledge of breed composition

is useful for different reasons. For instance, heterozygosity
is computed using it, certain management decisions (e.g.,
choosing a germplasm for a given environment) are made
taking it into account and it is necessary when designing
cross-breeding programmes (Frkonja, Gredler, Schnyder,
Curik, & Solkner, 2012; Huang, Bates, Ernst, Fix, & Stei-
bel, 2014; Kuehn et al., 2011). In addition, in several ani-
mal species, the commercial value of an individual is
largely determined by its breed composition, and determin-
ing purity plays an important role when taking breeding
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decisions (Huang et al., 2014; Funkhouser et al., 2017).
Furthermore, in genetic evaluation of multibreed popula-
tions, breed composition of individuals is required because
this parameter and functions of it are used as explanatory
variables (Elzo & Famula, 1985). Finally, knowledge of
breed composition may play an important role in certain
analyses such as genome-wide association (Chiang et al.,
2010; Kuehn et al., 2011).

In many populations, pedigree or ancestral breed com-
position data are incomplete or do not exist, and the lack
of any of these sources of information prevents the tradi-
tional estimation of individual breed composition. Alterna-
tively, molecular markers can be used to estimate breed
composition. This idea has been used to estimate breed
composition in some species; for instance, Parker et al.
(2004) used microsatellites to estimate breed composition
in dogs. Hereinafter, the traditional estimator based on
pedigree and ancestral breed composition records will be
referred to as the pedigree-based estimator. For (not neces-
sarily related) individuals whose parents have the same
breed composition, this estimator yields the same estimate.
Henceforth, groups of individuals having the same pedi-
gree-based breed composition estimate will be denoted as
breed groups. It is known that for cross-bred individuals
different from F1’s, the actual breed composition varies
from one individual to another within the same breed group
due to crossing over and chromosomal assortment taking
place during meiosis, and as a consequence, the pedigree-
based breed composition could be far from the actual one.
Thus, the use of genomic information helps in solving this
problem and permits to obtain estimates of individual breed
composition in the absence of pedigree or ancestral breed
composition information (Chiang et al., 2010; Frkonja
et al., 2012; Gorbach et al., 2010).

The availability of genotypes for thousands of SNP
markers located across the whole genome permits to esti-
mate breed composition using genomic data. Because it is
very unlike that certain marker alleles exist only in a
given breed (private alleles), the frequencies of the refer-
ence marker alleles in each base breed have been used
(Chiang et al., 2010; Kuehn et al., 2011) to estimate breed
composition. Kuehn et al. (2011) adapted the linear
regression approach of Chiang et al. (2010) to estimate
breed composition based on SNP genotypes using least
squares. This methodology was used by Huang et al.
(2014) to estimate breed composition in pig populations in
the United States. A limitation of this approach is that the
estimators are not constrained to fall in the appropriate
parameter space, and consequently, out-of-range estimated
breed compositions can be obtained. When using the least
squares method, this problem can be overcome by carry-
ing out a linearly constrained quadratic optimization which
guarantees the solution to be in the desired space.

Funkhouser et al. (2017) used this approach to estimate
breed composition in the same swine populations studied
by Huang et al. (2014).

A feature of this regression problem is that frequencies
of reference marker alleles in base breeds are not observ-
able, and consequently, they have to be estimated. Statisti-
cal methods taking uncertainty about these estimates into
account have not been developed yet. Alternatively, a
Bayesian estimation method permits to obtain estimates in
the correct space without using constrained optimization
procedures using prior distributions having the appropriate
support set. In addition, Bayesian methods provide a coher-
ent way to take into account uncertainty about allele fre-
quencies in base breeds.

Thus, the objective of this study was to develop statisti-
cal methods incorporating genomic data (genotypes for
SNP markers located across the whole genome) and
accounting for uncertainty about allele frequencies in base
breeds to estimate individual breed composition using a
Bayesian approach.

2 | MATERIALS AND METHODS

2.1 | Modelling approaches

The idea of estimating breed composition using a regres-
sion model whose design matrix is built using reference
marker allele frequencies in base breeds (Chiang et al.,
2010; Kuehn et al., 2011) is adopted here.

Let B be the total number of base breeds, the objective
is to estimate the fraction of each one of them in every
individual. For individual i, i = 1, 2, . . . ,n, the fraction of
breed j is denoted as bij; j ¼ 1; 2; . . .;B. The set of fractions
of each breed for every individual bi ¼ ðbi1; bi2; . . .; biBÞ
corresponds to its breed composition; therefore, the breed
composition of an individual is a B-dimensional vector.
Notice that the parameter space (the set where the vector
of breed composition takes values on) corresponds to a set
of B non-negative real numbers such that their sum equals
one (this sort of set is known as a (B � 1) a-dimensional
simplex). Hereinafter, this set will be denoted as Ω.

Because of the restriction
PB

j¼1 bij ¼ 1; 8 i ¼ 1; 2; . . .; n;
only B �1 base breeds need to be considered in the analy-
sis. The model corresponds to a Bayesian generalized linear
model (GLM) in which the stochastic component is speci-
fied as follows. Let yi be the vector containing the number
of copies of the reference allele for every marker in indi-
vidual i. Because this study focuses on diploid individuals,
for individual i, it is assumed that yij �Binomialð2; pijÞ;
0� j�mi, where mi is the number of available marker
genotypes for individual i. Therefore, under the assumption
of linkage equilibrium, the likelihood for individual i corre-
sponds to the product of mi Binomial probability mass
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functions. On the other hand, the canonical link (i.e., the
logit link) is used; therefore, the systematic component is

gi ¼ fgijgmi�1 ¼ log
pij

1� pij

� �
¼ xj:bi; (1)

where bi is an unknown vector containing the regression
coefficients for B–1 breeds which are interpreted as the
fraction of each breed in individual i, X is a matrix con-
taining the frequencies of the reference alleles in these B–
1 base breeds and xj: is its jth row. Notice that xj. is
common to all individuals genotyped for the jth marker
locus.

Under the assumption of independence of individual
genotypes, the likelihood for the complete population is

Lðb; yÞ ¼ f ðyjpÞ ¼
Yn
i¼1

f ðyijpiÞ

¼
Yn
i¼1

Ymi

j¼1

f ðyijjpijÞ /
Yn
i¼1

expðhSi; biiÞ
gðbi;XÞ

(2)

where y :¼ðy01; . . .;y0nÞ0; b :¼ðb01; . . .;b0nÞ0; p :¼ðp01; . . .;p0nÞ0;
pi :¼ðpi1; . . .;pimiÞ0;1� i�n, operator 〈�,�〉 represents the dot
product, Si :¼

P
j�Mi

yijxj:; gðbi; XÞ ¼
Q

j�Mi
ð1þ

expðhxj:; biiÞÞ2 and Mi is the set of marker loci for which
individual i has been genotyped, the size of this set is mi.

A natural choice for the prior of bi is a Dirichlet (ai) distri-
bution because its support set corresponds to the appropri-
ate parameter space; thus, bi �ind DiricheltðaiÞ; 1� i� n;
ai ¼ ðai1; . . .aiBÞ, hence:

pðbiÞ /
YB�1

k¼1

baik�1
ik 1 �

XB�1

k¼1

bik

 !aiB�1

:

Hereinafter, this model will be referred to as BIBI.

2.1.1 | Remark 1

Notice that this estimation problem has the following fea-
tures. Unlike other regression models, the design matrix is
not observable; therefore, it has to be estimated. The usual
approach uses estimates obtained using pure-bred animals
from a reference population (Chiang et al., 2010; Huang
et al., 2014; Kuehn et al., 2011). Another feature of the
problem is that for certain individuals, the true value of the
parameter bi is known. These are pure-bred and F1 individ-
uals. For example, suppose that the model is parameterized
in terms of breeds 1, 2, . . ., B – 1, then, if individual i is a
purebred of breed k, 1 ≤ k ≤ B – 1, then, bi = (0,. . ., 0, 1,
0,. . .., 0)0 where scalar 1 is located in the kth entry of bi, if
individual i is a purebred of breed B then bi ¼ 0ðB�1Þ�1, if
individual i is an F1 resulting from breeds k and k0,
1 ≤ k < k0 ≤ B – 1, then the only non-null entries of bi are
k and k0 each being equal to 1/2, and so on.

Under a quadratic error loss, the Bayes estimator (i.e.,
the estimator minimizing the Bayesian risk) is the poste-
rior mean (Lehmann and Casella, 1998); this is the point
estimator used here. For 1 ≤ i ≤ n, the posterior mean has
the form

b̂i ¼ fb̂ijgðB�1Þ�1

¼ E½bijjyi;X�

¼
R
X bij

QB�1
k¼1 b

aik�1
ik ð1�PB�1

k¼1 bikÞaiB�1 expðhSi;biiÞ
gðbi;XÞ dbiR

X

QB
k¼1 b

aik�1
ik ð1�PB�1

k¼1 bikÞaiB�1 expðhSi;biiÞ
gðbi;XÞ dbi

(3)

Therefore, the corresponding estimator of breed
composition of individual i is b̂i ¼ b̂i1; � � � ; b̂iðB�1Þ;

�
1�PB�1

k¼1 b̂ikÞ. By properties of the expected value (Case-
lla and Berger, 2002), it follows that the estimated breed
composition lies in Ω; consequently, this method guaran-
tees estimates in the appropriate space. Notice that this
expectation can be seen as the ratio of the expectation of
two functions of bi taken with respect to the prior distribu-
tion, that is, with respect to a Dirichlet (ai). Thus,

b̂i ¼
Ep bi

expðhSi;biiÞ
gðbi;XÞ

h i
Ep

expðhSi;biiÞ
gðbi;XÞ

h i (4)

Consequently, if the interest is only in estimating the
posterior mean, there is no need for using Markov chain
Monte Carlo (MCMC) methods because this expectation
can be approximated using classical Monte Carlo integra-
tion (MCI). Therefore, once N samples b1i ; . . .; b

N
i are

drawn from a Dirichlet (ai) distribution, the Monte Carlo
approximation to b̂i is

b̂MC
i ¼

PN
j¼1 b

j
i
expðhSi;bjiiÞ

gðbji;XÞPN
j¼1

expðhSi;bjiiÞ
gðbji;XÞ

(5)

2.1.2 | Accounting for uncertainty about the
design matrix

As mentioned in Remark 1, this estimation problem exhi-
bits the feature that the design matrix is not observable. In
the previous section, a model conditioned on this matrix
was proposed. The use of a Bayesian approach has the
advantage of permitting to account for uncertainty about
matrix X in an easy way. To this end, X is given a prior
distribution. Recall that xkj; 1� k�m ¼ max1� i� n mið Þ;
1� j�B� 1 corresponds to the frequency of the reference
allele of marker k in base breed j, assuming independence
of these random variables across breeds (i.e., independence
of columns of X) and linkage equilibrium (i.e.,
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independence of rows of X), independent Beta distributions
can be posed over each entry of X. The other components
of the model are the same; thus, the systematic component
is the one shown in Equation 1, the likelihood corresponds
to the one in Equation 2 and vectors fbigni¼1, are given
independent Dirichlet (ai) priors. Under this model, the
joint posterior is as follows:

p b;Xjyð Þ /
Yn
i¼1

expðhSi; biiÞ
gðbi;XÞ

YB�1

k¼1

baik�1
ik

� 1�
XB�1

k¼1

bik

 !aiB�1Ym
j¼1

YB�1

k¼1

xajk�1
jk ð1� xjkÞbjk�1

(6)

From Equation 6, it follows that all the full conditionals
are not standard distributions and that given b and y the
rows of X are conditionally independent, but its columns
are not. In this case, the dimensionality of the problem
increases notably because m unknown parameters are intro-
duced in the model. Like in the previous scenario, the pos-
terior mean can be used as a point estimator of breed
composition and it can also be computed as a ratio of
expectations taken with respect to the prior distribution.
Let h ¼ ðb0; vec Xð Þ0Þ and H ¼ X� Cm B�1ð Þ where vec (�) is
the vec operator and Cm B�1ð Þ is an mðB� 1Þ-dimensional
unit hypercube. Thus, the extended model accounting for
uncertainty about X has parameter h and parameter space Θ
and for 1 ≤ l ≤ (n + m) (B – 1):

ĥl ¼ E½hljy� ¼
R
H hlLðh; yÞpðhÞdhR
H Lðh; yÞpðhÞdh ¼ Ep½hlLðh; yÞ�

Ep½Lðh; yÞ�
where

pðhÞ ¼ pðb;XÞ /
Yn
i¼1

YB�1

k¼1

baik�1
ik

 !
1�

XB�1

k¼1

bik

 !aiB�1

�
Ym
j¼1

YB�1

k¼1

xajk�1
jk ð1� xjkÞbjk�1

and Lðh; yÞ is the likelihood.
In particular, the Monte Carlo approximation to the pos-

terior mean of bi based on a sample h1, . . ., hN drawn from
pðhÞ is

b̂MC
2i ¼

PN
j¼1 b

j
i
expðhSji;bjiiÞ

gðbji;XjÞPN
j¼1

expðhSji;bjiiÞ
gðbji;XjÞ

(7)

where Sji ¼
P

k2Mi
yikx

j
k: This extended version of the pro-

posed model will be referred to as BIBI2. For the sake of
clarity, a toy example showing the computation of breed
composition using expressions 5 and 7 is presented in
Appendix S1.

2.2 | Assessment of accuracy

Some previous studies have considered the pedigree-based
breed composition estimates (Kuehn et al., 2011) or the
true breed composition from simulated data (Funkhouser
et al., 2017) to assess the adequacy of estimators of indi-
vidual breed composition. When working with real data,
using the second property of the estimation problem being
considered in this study (see Remark 1), the accuracy of
the point estimators proposed here, that is, the posterior
mean estimated using Equation 5 (when not accounting for
uncertainty about X) or Equation 7 (when accounting for
uncertainty about X) can be computed using the l1 norm of
the difference between bi and b̂i for pure-bred and F1 indi-
viduals. Specifically, the following measure of accuracy
was used:

1
jV j
X
i�V

jjb̂i � bijj1 (8)

where V is the set pure-bred and F1 individuals, jV j its
number of elements and operator ||�||1 represents the l1
norm.

2.3 | Implementation in a multibreed Bovine
population

Implementation with real data was carried out using a
multibreed beef cattle population from the University of
Florida’s Beef Research Unit (BRU). This multibreed pop-
ulation was created in 1989, and it is composed of two
breeds: Angus and Brahman. Individuals are mated accord-
ing to a diallel design; therefore, this population contains
individuals with breed composition ranging from pure-bred
Angus to pure-bred Brahman. Details on this multibreed
population can be found in Elzo and Wakeman (1998).
Data came from a subset of 120 individuals with pedigree-
based estimated Angus fraction ranging from 0 to 1 that
were genotyped for SNP markers included in the GeneSeek
Genomic Profiler F-250 (Neogen Corporation, Lansing,
MI, USA). Only those markers in common with the Illu-
mina BovineSNP50 array (Illumina Inc., San Diego, CA,
USA) were considered. To construct the design matrix for
model BIBI and to define the prior for X in model BIBI2,
the reference allele frequencies in Angus and Brahman
reported by Kuehn et al. (2011) were used. These values
were the entries of the design matrix when fitting BIBI,
whereas when fitting BIBI2, the hyperparameters were cho-
sen in such a way that prior means matched them. Markers
located in autosomes that had a minor allele frequency lar-
ger than 0.05 were considered. Then, marker loci for which
all individuals were heterozygous were removed. After this
editing, a total of 9906 markers were left. In addition to
models BIBI and BIBI2, the model proposed by Kuehn
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et al. (2011) was fitted to this data. Accuracy of estimators
was assessed using Equation 8 in a set of 60 individuals
known to be purebreds (Angus and Brahman) and F1.
Henceforth, this set will be referred to as MAB-V. In addi-
tion to the average in Equation 8, other descriptive statis-
tics of the norms jjb̂i � bijj1 were also computed. Finally,
Pearson correlation coefficients among the different estima-
tors of Angus fraction were computed in the complete set
of 120 individuals and in the subset of 60 non-F1 cross-
bred individuals.

3 | RESULTS

According to the expression presented in Equation 8, from
the three models considered here, BIBI2 had the best per-
formance and the estimator proposed by Kuehn et al.
(2011) had the worst. Moreover, estimates from BIBI2
were less variable across individuals than those obtained
from the other two models (Table 1).

On the other hand, correlations between estimated
Angus fractions from the four estimators considered here
(those from the three regression models mentioned above
and the pedigree-based estimator) were high in both the
complete set of 120 individuals and the subset of 60 non-
F1 cross-bred individuals (Table 2).

The smallest value was 0.92; it corresponded to the cor-
relation between the estimates from the method proposed
by Kuehn et al. (2011) and the pedigree-based estimates in

the two sets, and the largest was 0.95, corresponding to the
correlations between BIBI and the pedigree-based estimates
and between BIBI and BIBI2 estimates in the complete set
(Table 2).

4 | DISCUSSION

In this study, Bayesian GLM’s to estimate breed composi-
tion in diploid species using biallelic molecular markers
were developed. Specifically, these models correspond to
Bayesian logistic regressions, assigning a Dirichlet prior to
the vector of regression coefficients. This prior was chosen
because its support set matches the parameter space of this
estimation problem (Ω). In a first stage, the model was for-
mulated conditional on the design matrix X (BIBI), which
is formed using marker allele frequencies in base breeds.
However, due to the fact that these frequencies are
unknown, this estimation problem has as special feature the
fact that the design matrix is not observable; therefore, it
has to be estimated. Consequently, this model was
expanded to account for uncertainty about the design
matrix (BIBI2); this expanded version treats the design
matrix as an unknown parameter, and independent Beta
priors are assigned to each one of its entries. Thus, this
model takes into account the fact that there exists uncer-
tainty about the design matrix and incorporates it in the
estimation process. The model conditional on the design
matrix is simpler because for each individual, it only has
B-1 parameters. The point estimator used here was the pos-
terior mean, which according to decision theory, minimizes
the Bayesian risk under the squared error loss (Lehmann
and Casella, 1998). In both models, the posterior and full
conditional distributions are unknown.

In a regression model, when the explanatory variables
are recorded with errors, it could induce bias in the param-
eter estimates; therefore, there exist approaches to take the
measurement error in regression variables into account
(Lehmann and Casella, 1998; Rawlings, Pantula, & Dickey,
1998). In a similar spirit, in the problem addressed here,
the regression variables are actually estimates, thus, they
may differ from the true values. Hence, the model account-
ing for this fact is theoretically more rigorous and it could
be expected to yield more accurate estimators of breed
composition. A small increment in accuracy (as measured
by the expression in Equation 8) was observed in this
study (Table 1). Relative to the accuracy of method BIBI,
it corresponds to an improvement of 7.69%. At this point,
it needs to be mentioned that beyond the potential gains in
accuracy, model BIBI2 features the following practical
advantages. Firstly, when a reference population to estimate
allele frequencies in base breeds is not available, BIBI2
still permits to estimate individual breed composition.

TABLE 2 Pearson correlation coefficients among different kinds
of Angus fraction estimates in the complete set and in the subset of
non-F1 cross-bred individualsa

BIBI BIBI2 KOLS Pedigree-based

BIBI 1 0.94 0.92 0.94

BIBI2 0.95 1 0.92 0.94

KOLS 0.92 0.92 1 0.92

Pedigree-based 0.95 0.95 0.92 1

aUpper off-diagonal elements correspond to correlations in the subset of non-
F1 cross-bred individuals, while lower off-diagonal elements correspond to cor-
relations in the complete set.

TABLE 1 Descriptive statistics of the l1 norm of the difference
between estimated and true breed compositions in the MAB-V set

Statistic BIBI BIBI2 KOLSa

Mean 0.026 0.024 0.200

Standard deviation 0.003 0.001 0.052

Minimum 0.011 0.021 0.067

Maximum 0.028 0.026 0.266

aOrdinary least squares estimator based on the model proposed by Kuehn et al.
(2011).
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Secondly, if it is of interest, estimates of the entries of the
design matrix, namely allele frequencies in base popula-
tions can be computed because these are model parameters
in BIBI2. Consequently, BIBI2 can be regarded as a more
versatile and theoretically rigorous model.

Bayesian estimation of breed composition has another
appealing feature. In certain cases, there is interest in mak-
ing probabilistic statements about breed composition; for
example, to answer the question: what is the probability
that the fraction of breed k in individual i is larger than t?
Models such as BIBI and BIBI2 permit to easily answer
this kind of questions using the posterior distribution of b.
Specifically, if Ψ is a proper subset of Ω, then

Pðb 2 WjyÞ ¼
Z
W

pðbjyÞdb (9)

Notice that for model BIBI2, obtaining pðbjyÞ requires
integration of the joint posterior density of b and X with
respect to X and that for models BIBI and BIBI2, the inte-
gral in Equation 9 has to be calculated numerically. In
addition, interval estimates of breed composition can be
obtained by computing credible sets.

Regarding evaluation of accuracy of the proposed esti-
mators, using the fact that in this estimation problem the
true value of bi is known for pure-bred and F1 individuals,
it was proposed to use this set to assess the accuracy of a
given estimator of breed composition. An approach in the
same spirit, but considering only pure-bred individuals
from some breed of interest has been used in previous
studies (Frkonja et al., 2012; Huang et al., 2014; Funkhou-
ser et al., 2017). Notice that for pure-bred and F1 individu-
als, the pedigree-based estimator is 100% accurate; thus,
Equation 8 is useful to compare marker-based estimators
because the pedigree-based estimator will always have a
value of zero. A drawback of this measure is that it does
not consider the whole parameter space; it only assesses
the performance of different estimators at certain points of
this space. Due to the biological reasons explained in the
introduction, marker-based estimators could be expected to
outperform the pedigree-based estimator in non-F1 cross-
bred individuals because they consider individual variation
in breed composition; recall that the pedigree-based estima-
tor takes the same value for all the offspring of a given
pair of individuals, whereas a marker-based estimator does
not. Kuehn et al. (2011) used the pedigree-based estimates
of breed composition of cross-bred individuals to assess
the performance of their regression-based estimator. How-
ever, due to the disadvantages of the pedigree-based esti-
mator mentioned above, this approach may not be entirely
appropriate to assess accuracy. Simulation is a valuable
tool to assess the accuracy of different estimators of breed
composition. Funkhouser et al. (2017) carried out a

simulation study to assess the performance of their con-
strained regression method and they found correlations
between estimated and true breed compositions of 0.97.

High correlations between estimates of Angus fraction
from the four methods considered here were found
(Table 2). This result is in agreement with results reported
by Kuehn et al. (2011) and Frkonja et al. (2012). For the
set of individuals analysed in this study, although correla-
tions between estimates of Angus fraction obtained from
the Bayesian estimators and the least squares estimator pro-
posed by Kuehn et al. (2011) were high, the accuracy of
the Bayesian estimators was considerably higher.

As discussed previously, marker-based estimators of
individual breed composition are a useful and reliable tool
to infer breed composition when pedigree and/or ancestral
breed composition records are not available. However, the
benefits of marker-based estimators go beyond this scenario
because having a better knowledge of individual breed
composition has several potential applications even when
pedigree and ancestral breed compositions are known.
Examples of problems in which having marker-based esti-
mates of breed composition could have a positive impact
as compared to pedigree-based estimates are selection of
candidates for cross-breeding programs, creation of the so-
called synthetic breeds or creation of genetic lines, estima-
tion of heterosis effects (Dickerson, 1973), and estimation
of average breed additive effect and multibreed genetic val-
ues (Elzo & Famula, 1985). As to the latter topic, the fact
that for non-F1 cross-bred individuals, pedigree-based
breed composition estimates could be far apart from the
actual composition poses a question regarding the impact
of the use of marker-based estimates on the accuracy of
predicted multibreed genetic values as defined in Elzo and
Famula (1985). Breed composition and functions of it are
used as explanatory variables in the linear models used to
predict genetic values and to estimate genetic parameters in
multibreed populations (Cardoso & Tempelman, 2004;
Elzo, 1994, 1996; Elzo & Famula, 1985); therefore, it
could be of interest to compare the performance of a multi-
breed model considering marker-based estimated breed
compositions with the standard model that uses pedigree-
based estimates. Our methods could also be used in across-
country multibreed genetic evaluation by obtaining esti-
mates of individual breed composition in each country and
using them to build explanatory variables used in models
like those described in Elzo and Bradford (1985). In these
models, it is important to account for heterogeneity of vari-
ance and covariance components and genetic effects across
countries; therefore, using breed compositions in each
country could increase the reliability of predicted breeding
values. Notice that these methods could also be applied to
populations where there exist genetic groups (different
from breed groups) and there have been mating between
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individuals from different groups. An example of this kind
of genetic groups is the case of genetically distinct popula-
tions of individuals from the same breed like those per-
forming in different environments under different selection
criteria. In this scenario, instead of predicting the fraction
of each breed in each individual, the model would predict
the fraction of each group and this information could be
implemented in genetic evaluation models.

An example of a successful application of marker-based
estimation of individual breed composition is the adoption
of the methods developed by Funkhouser et al. (2017) by
the US National Swine Registry (NSR) to screen pure-bred
Yorkshire pigs.

For the sake of simplicity, our models do not account
for linkage disequilibrium or kinship. Regarding the link-
age equilibrium assumption, to meet it, the set of SNP to
be used could be selected on the basis of an algorithm that
picks independent markers such as tag SNP. Moreover,
studying the robustness of our methods to deviations from
the linkage equilibrium assumption could be part of future
research. Another refinement of models BIBI and BIBI2 is
to consider kinship. It can be accomplished by removing
the assumption of conditional independence of vectors y1,
. . ., yn given X and b. When pedigree information is avail-
able, a likelihood based on genetic relationships can be
derived using the pedigree by following a derivation simi-
lar to the one presented in Mart�ınez, Khare, Banerjee, and
Elzo (2017). A point that also opens a path for refinement
of our models is to accommodate genetic relationships
when estimating allele frequencies in the base breeds. For
model BIBI, the method proposed by McPeek, Wu, and
Ober (2004) which yields BLUE of allele frequencies using
pedigree information, could be used to estimate X. On the
other hand, this could be achieved through hierarchical
modelling in model BIBI2.

An alternative approach to estimate breed composition
is to use distance-based or model-based clustering methods
that have been designed to infer population structure.
Examples of software implementing this sort of methods
are STRUCTURE (Pritchard, Stephens, & Donnelly, 2000),
MENDEL (Lange et al., 2001) and EigenStrat (Price et al.,
2006). Some of them perform a soft clustering, that is, they
compute the probability that each individual pertains to
each cluster (Hastie, Tibshirani, & Friedman, 2009).
Because the focus of this study was on the regression
approach, these alternative methods were not implemented.
Moreover, previous studies have reported high degree of
agreement among the estimates from some of these meth-
ods and the regression approach (Chiang et al., 2010;
Kuehn et al., 2011). Notwithstanding, it is worth mention-
ing the following drawback of some clustering methods.
They are designed to infer a “cryptic” population structure,
which is useful when the underlying factors inducing

genetic heterogeneity (structure) in the population are not
easily detected. In fact, they can infer the number of sub-
populations (i.e., the number of clusters); however, when
using them to estimate breed composition, the number of
clusters is set equal to the number of breeds. Thus, for each
individual what is estimated is the probability of pertaining
to each one of these clusters; consequently, breed fractions
are not estimated directly and clusters have to be assigned
to breeds, for example, cluster 1 corresponds to breed B
and cluster 2 corresponds to breed A. Usually, this assign-
ment is performed using pure-bred individuals or individu-
als known to have a high frequency of certain breed. For
two or three breeds, this is not too difficult, but when the
number of breeds increases and pedigree-based estimates or
pure-bred individuals of certain breeds are not available,
assigning clusters to breeds could be difficult and this may
introduce additional bias. For example, consider the prob-
lem of estimating breed composition in a cross-bred popu-
lation composed of eight breeds where pure-bred
individuals and pedigree are not available.

5 | FINAL REMARKS

The use of genomic data permits to estimate breed compo-
sition when pedigree or ancestral breed composition infor-
mation is missing, but advantages of this kind of estimators
go beyond this. As an example, consider the potential ben-
efits of the use of marker-based estimates of breed compo-
sition in different genetics problems that were discussed
here. Therefore, this approach could be useful even when
pedigree and ancestral breed composition records are avail-
able. Hence, the potential applications of these estimators
open a path for further research. The regression models
developed here permit to easily obtain point and interval
estimates of breed composition and to make useful proba-
bilistic statements about it. Also, unlike other regression
models used to estimate breed composition, model BIBI2
accounts for uncertainty about allele frequencies in base
breeds and permits to estimate breed composition in the
absence of reference populations to estimate them.
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