The Unique Ruminant Animal

- Ruminants have a four compartment stomach and are able to digest fiber.
- This is an important consideration when attempting to convert fiber products into a usable food-source for humans.
- Four Compartments Include:
 1. Reticulum
 2. Rumen
 3. Omasum
 4. Abomasum

The Rumen

One of the coolest places on earth

The Beef Cow’s Assignment

- Our expectation of a productive cow
 - Maintain her body weight / condition
 - Deliver a live calf without difficulty
 - Come into heat promptly
 - Conceive early in the breeding season
 - Nourish a developing fetus
 - Adequately nurse the calf through to weaning

The Basic, Complicated Nutritional Equation:

Cow Nutrient Requirements -

Nutrients Supplied by Forage =

Nutrients Needed in Supplement
Defining the Situation

• What is the overall objective of the feeding / supplementation program
 – Extend the forage base
 – Meet nutritional deficiencies
 – Alter cow production

• You have to know where you want to go before you can get there.

Water

• Water is the most critical nutrient in ALL livestock production:
 – Clean
 – Fresh
 – Consider semi-routine analysis:
 • Microorganisms
 • Chemicals

• To ensure availability and control contamination of waterways, it is best to provide cattle with water derived from a well.

Basic Required Nutrients

Water
Protein
Minerals
Vitamins
Fats
Energy

Energy

• Energy is derived from digestion of feedstuffs
 – Fiber
 – Protein
 – Starch
 – Fat

• TDN is our common measure of feedstuff energy

• Net energy assigns the proportion of that feedstuff which meets
 – Maintenance, growth, lactation, gestation

• Common sources of energy include:
 - forage (hay)
 - citrus pulp
 - molasses
 - grain byproducts
 - fat

Energy Supplementation

• Main driver of BCS

• Reasons for use:
 – Reduce forage consumption
 – Meet energy demands
 – Diet selection allows

<table>
<thead>
<tr>
<th>Feed</th>
<th>% TDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahiagrass</td>
<td>51</td>
</tr>
<tr>
<td>Hay</td>
<td>59</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>59</td>
</tr>
<tr>
<td>Pellet</td>
<td>59</td>
</tr>
<tr>
<td>Soybean</td>
<td>70</td>
</tr>
<tr>
<td>Hulls</td>
<td>72</td>
</tr>
<tr>
<td>Molasses</td>
<td>72</td>
</tr>
<tr>
<td>Soybean</td>
<td>84</td>
</tr>
<tr>
<td>Meal</td>
<td>84</td>
</tr>
<tr>
<td>Corn</td>
<td>88</td>
</tr>
</tbody>
</table>
Energy Supplementation Considerations

- Begin feeding before it is too late
- Response improves with long term low level supplementation
- Feeding low levels of energy (w/out adequate diet protein) decreases overall energy intake
- High starch supp. decreases fiber digestibility (Negative Associative Effects)

Energy Supplementation Considerations

- Usually contain < 20% CP
- Do not feed energy when high CP supplement will improve performance
- Grain is a substitute for forage
- High starch supp. work best with moderate to high quality forage

Protein

- Ruminant protein requirements are met by:
 - Diet
 - Rumen microbes
 - Recycling of urea
- Ruminants are able to utilize “microbial-protein”, derived from microbes, which live in the rumen.
- Common protein sources include:
 - Forage, Oilseed Meals, Grain By-products, Feather Meal

Protein Supplementation

- Increases forage dry matter intake and digestibility
- Critical level:
 - forage CP < 7% or
 - TDN:CP is >7 (51% TDN: 5% CP)
- Correct protein type is essential
 - Non-protein nitrogen
 - Natural protein
 - Ruminal Degradable Protein (DIP)
 - Ruminal Undegradable Protein (UIP)

Natural Protein

- Soybean, cottonseed, feather meal, distillers grains, other forages: ryegrass, perennial peanut
- Animal performance: natural>NPN
- Supplies DIP, UIP, energy, and other nutrients
- Proportions of DIP and UIP vary and can affect use and performance in given situation

Natural Protein Considerations

- Utilization: similar among classes of animals
 - Use with younger animals with increased requirements
- Fed as dry or additive in liquid feeds
- Supplies N to rumen for microbes and protein to animal
Non-Protein Nitrogen

• Synthetic (Urea, Biuret) chemical compounds that contain a nitrogen source not associated with protein.
• Improvement in performance compared with no supplementation.
• Utilization rate may be reduced because of decreased forage digestibility potential.
• Lacks energy, vitamins, and minerals.
• Urea is a common NPN source used in cattle supplements.
• Rumen microbes are able to use NPN to synthesis microbial protein.

NPN Considerations

• Management issues
 — Mature cows consuming forage of adequate quality can use NPN as an economic substitute to natural protein.
 — Better performance in older cows than young/growing cows.
 — Young and low body condition cattle will experience improved performance with the use of natural protein.
• Potentials for toxicity
• Requires a carrier that supplies energy
• Success of utilization depends on adequate ruminal energy for microbes
• Liquid Feeds (Molasses)
 — Provide carbohydrates for bacterial energy to utilize NPN.

Vitamin-Mineral Supplementation

• Vitamin-Mineral deficiencies cause problems regardless of protein/energy
• Deficiencies in forage
 — especially low quality
 — fast-growing and/or winter annuals
• Other supplements may alter mineral availability in forage
• Efficacy of all other supplementation depends on vitamin/mineral adequacy

Mineral Supplementation

<table>
<thead>
<tr>
<th>Macro</th>
<th>Micro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium</td>
<td>Copper</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Iron</td>
</tr>
<tr>
<td>Sodium</td>
<td>Manganese</td>
</tr>
<tr>
<td>Sulfur</td>
<td>Zinc</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Cobalt</td>
</tr>
<tr>
<td>Calcium</td>
<td>Iodine</td>
</tr>
<tr>
<td>Selenium</td>
<td></td>
</tr>
</tbody>
</table>

Vitamin Supplementation

<table>
<thead>
<tr>
<th>Water</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamine (B1)</td>
<td>Vit. A</td>
</tr>
<tr>
<td>Riboflavin (B2)</td>
<td>Vit. D</td>
</tr>
<tr>
<td>Niacin</td>
<td>Vit. E</td>
</tr>
<tr>
<td>Biotin</td>
<td>Vit. K</td>
</tr>
<tr>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td></td>
</tr>
<tr>
<td>Pantothenic Acid</td>
<td></td>
</tr>
<tr>
<td>Folic Acid</td>
<td></td>
</tr>
</tbody>
</table>

What affects cow nutrient requirements

• Nutrient requirements differ:
 — Age
 — Level of production
 — Current and/or desired body condition
 — Breed
 — Physiology
 • Lactation
 • Gestation
 — Pasture activity
 — Terrain
 — Pest load
 — Feed Additives
 • Ionophore
 — Environment
 • Temperature
 • Season
Effect of Time on Requirement Cycles in Beef Cows

Comparison of Cow vs Heifer Energy Requirement

Months Needing Energy/Protein Supplementation to Meet Requirements – Grazing Bahiagrass

Assessing Effectiveness of Nutrition

Energy/Protein Requirement Cycles in Beef Cows

Nutrient Requirement Cycles and Pasture Characteristics
How to tell if cattle are getting adequate nutrition

- Body Condition Score
- Estimation of body fat
- Gauge effectiveness of feeding program
- Decision tool to determine future feeding needs
- Scale of 1 to 9
- Most Florida cows score from 3 to 7
 - BCS 3 = 7 to 9% fat.
 - BCS 5 = 15 to 18% fat.
 - BCS 7 = 25 to 27% fat.

Cow Body Condition Score

- Body condition score is the best measure of past nutritional status and a good indicator of future reproductive performance.

 5 is the magic number!

Supplementation

- Feeding the cow herd is the largest cost area in beef enterprises, approx 45-50% of annual maintenance cost
- Stored or supplemental feeds constitute the largest, most variable portion
- Designing supplementation program correctly is a must

Final Remarks

- Underfeeding the cow herd before or after calving really affects 2 calf crops, this year’s and next year’s.

 THE MOST IMPORTANT NUTRIENT IS THE ONE THAT IS MISSING!

Questions