Food Hazards
HACCP DEFINES A FOOD HAZARD

• A **SIGNIFICANT** BIOLOGICAL, CHEMICAL, OR PHYSICAL HAZARD THAT CAN CAUSE HARM AND THAT IS **REASONABLY LIKELY TO OCCUR** IF NOT CONTROLLED

 – Significant ➔ Severity
 – Likely to occur ➔ Frequency
BIOLOGICAL HAZARD

• A biological entity that may cause an unacceptable risk to consumer’s health through illness.
• Primarily microbiological
FOOD MICROBIOLOGY –
THE GOOD, THE BAD, & THE UGLY

• THE GOOD
 – FERMENTED FOOD PRODUCTS
 – NATURAL PRESERVATIVES

• THE BAD
 – PATHOGENS

• THE UGLY
 – SPOILAGE
BACTERIA

• VARIED SHAPES AND SIZES
• SOME PRODUCE HEAT-RESISTANT SPORES
• VARIED OXYGEN & TEMPERATURE REQUIREMENTS
• VARIED HEAT RESISTANCE
Pathogenic Bacteria

- Salmonella spp.
- Clostridium botulinum
- Staphylococcus aureus
- Campylobacter jejuni
- Yersinia enterocolitica and pseudotuberculosis
- Listeria monocytogenes
- Vibrio cholerae O1
- Vibrio cholerae non-O1
- Vibrio parahaemolyticus
- Vibrio vulnificus
- Clostridium perfringens
- Bacillus cereus
- Aeromonas hydrophila
- Plesiomonas shigelloides
- Shigella spp
- Miscellaneous enterics
- Streptococcus
Escherichia coli

- enterotoxigenic (ETEC)
- enteropathogenic (EPEC)
- Enterohemorrhagic (EHEC)
 - O157:H7
- enteroinvasive (EIEC)
VIRUSES

• COMPOSED OF PROTEIN & NUCLEIC ACIDS (PRIMARILY RNA)

• DO NOT
 — GROW ON CULTURE MEDIA
 — MULTIPLY IN FOODS
 — SURVIVE WITHOUT HOST

&

• HOST SPECIFIC
Viruses

- Hepatitis
 - A virus
 - E virus
- Rotavirus
- Norwalk virus group
- Other gastroenteritis viruses
YEASTS

- LARGER THAN BACTERIA
- USUALLY PRODUCE GAS
- GENERALLY HEAT LABILE
 — ASCOSPORES HEAT RESISTANT
MOLDS

- GENERALLY AEROBIC
- VARIED HEAT RESISTANCE
- SALT/SUGAR TOLERANCE
 - GENERALLY HIGHER THAN BACTERIA
- MYCOTOXINS
PROTOZOA

• More highly organized than bacteria
• Do not multiply in foods
• Animal-like in cell composition
• Parasitic in nature
 – Need a host
Parasitic Protozoa and Worms

- Giardia lamblia
- Entamoeba histolytica
- Cryptosporidium parvum
- Cyclospora cayetanensis
- Anisakis sp. and related worms
- Diphyllobothrium spp.
- Nanophyetus spp.
- Eustrongylides sp.
- Acanthamoeba and other free-living amoebae
- Ascaris lumbricoides
- Trichuris trichiura
FOOD (& WATER) ASSOCIATED PROTOZOA

- GIARDIA
- ENTAMOEBA HISTOLYTICA -- AMOEbic
- DYSENTARY
- CRYPTOSPORIDIUM PARVUM
- CYCLOSPORA CAYATENENSIS
Natural Toxins

• Ciguatera poisoning
• Shellfish toxins (PSP, DSP, NSP, ASP)
• Scombroid poisoning
• Tetrodotoxin (Pufferfish)
• Mushroom toxins

• Aflatoxins44
• Pyrrolizidine alkaloids45
• Phytohaemagglutinin46 (Red kidney bean poisoning)
• Grayanotoxin47 (Honey intoxication)
• Gempylotoxin48 (Gastrointestinal illness from consumption of Escolar and Oilfish)
PREVENTION OF MICROORGANISMS

• Prevent
 – Entry
 – Contamination of facility
 – Growth
CHAIN OF INFECTION

• SEEDING OF ENVIRONMENT
 – OUTSIDE SOURCES

• SOURCE OR RESERVOIR
 – MOISTURE
 – CONDENSATE
 – PEOPLE

• TRANSMISSION TO FOOD
 – NOT PROTECTED

• GROWTH SUPPORT IN THE FOOD
 – COMPOSITION
 – TEMPERATURE
Bacteria Reproduction

Via binary fission--splitting into equal parts
Bacteria Reproduction

If a bacteria’s generation time is ~ 3 minutes,
in one hour 1 bacteria cell will become one million \((10^6)\).

Spoilage occurs at ~ \(10^7\).
Factors that affect microbial growth

1. Temperature
 - grow at temperatures from 32 to 150°F
 - no single bacteria will grow over this entire range.
 - classified according to the range of temperature

<table>
<thead>
<tr>
<th>Classification</th>
<th>Range (°F)</th>
<th>Optimum (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychrophiles</td>
<td>32-68</td>
<td>53</td>
</tr>
<tr>
<td>Mesophiles</td>
<td>68-113</td>
<td>90</td>
</tr>
<tr>
<td>Thermophiles</td>
<td>113-150</td>
<td>120</td>
</tr>
</tbody>
</table>
FACTORS AFFECTING MICROBIAL GROWTH

2. **Moisture** -- the water requirement for microbial growth is defined in terms of water activity (a_w) of the medium.

- Fresh meat has an a_w of 0.99 or higher
- The minimum a_w for
 - bacteria to grow is 0.90
 - Molds -- 0.8 or above
- a_w reduction is a means of food preservation drying, salting, freezing
Factors that affect microbial growth

3. Oxygen availability –
 – Aerobic
 Oxygen must be present to grow
 Aerobic psychrophiles most common meat spoiler.
 – Anaerobic
 Cannot grow when oxygen is present
 – Facultative
 Growth occurs both in the presence or absence of oxygen
Factors that affect microbial growth

4. pH (acidity) --
 - normal pH for bacteria growth
 * 6.5
 - pH range for most pathogens
 * 4.8 to 7.0

5. Physical properties
 - Surface area -- the more surface area
 - (greater area exposed to oxygen) the more microbial growth
DESTRUCTION OF MICROORGANISMS

• HEAT TREATMENT
 – STERILIZATION
 – PASTEURIZATION
 – TIME & TEMPERATURE
• CHEMICAL AGENTS
 – SANITIZERS, DISINFECTANTS
 – ANTIBIOTICS
 – CONCENTRATION & TEMPERATURE
DESTRUCTION OF MICROORGANISMS

• DEHYDRATION
 – DIRECT EFFECTS
 • CONCENTRATION EFFECT
 – INDIRECT EFFECTS
 • CONCENTRATE SALTS & SUGARS

• HURDLE AGENTS
 – ACIDS, SUGARS
 – CHEMICAL PRESERVATIVES
DESTRUCTION OF MICROORGANISMS

• IRRADIATION
 – LOW ENERGY
 • MICROWAVE
 • ULTRAVIOLET
 – HIGH ENERGY
 • GAMMA, X-RAYS

• COLD PRESERVATION
 – NOT A KILL STEP
FOODBORNE INFECTIONS

• Microorganisms in food
• Ingested into host
• Establishes itself in the host’s body
 – Multiplies therein (sometimes)
 – Long incubation period
• Host response
 – Usually fever
 – GI infection
TYPES OF FOODBORNE INFECTIONS

• INVASIVE INFECTIONS
 • INVADE BODILY TISSUES AND ORGANS.

• TOXICOINFECTIONS
 • Capable of multiplication or colonization in human intestinal tract
 • Produce toxins.
INVASIVE INFECTIOUS BACTERIA

• SALMONELLA
• AEROMONAS
• CAMPYLOBACTER
• SHIGELLA
• VIBRIO PARAHAEMOLYTICUS
• YERSINIA
• ENTERIC-TYPE ESCHERICHIA COLI
TOXICOINFECTIOUS BACTERIA

- VIBRIO CHOLERAE
- BACILLUS CEREUS (DIARRHEAL-TYPE)
- C. BOTULINUM (IN INFANTS)
- C. PERFRINGENS
- VEROTOXIGENIC E. COLI
 - (E. COLI O157:H7 AND OTHERS).
FOODBORNE INTOXICATION

• Grows/Multiplies in food
 – Impacted by food environment
 • Temperature abuse
• Produces toxin in food
• Toxin ingested
 • Rapid onset
 – Vomiting
 – No fever
FOODBORNE INTOXICATION AGENTS

• CLOSTRIDIUM BOTULINUM
• BACILLUS CEREUS (EMETIC-TYPE)
• STAPHYLOCOCCUS AUREUS
FOOD BORNE PATHOGENS
STAPHYLOCOCCUS AUREUS

• Illness
 – Classic toxin symptoms
• Onset: 1 - 7 hr
• Duration: 24 - 48 hr
• Low mortality
• 6 log growth for toxin production
• Chronic after effects
STAPH. AUREUS

- Sources?
 - Humans and animals are the primary reservoirs

- Implicated foods?
 - Foods that require considerable handling during preparation and that are kept at slightly elevated temperatures after preparation

- Heat stable toxin
SALMONELLA

• Illness
 – GI infection
• Dose:
 – Varied 1 - 100,000
• Onset
 – 5 hr to 5 days (12-36 hr)
• Chronic after effects
SALMONELLA

• Sources
 – You name it

• Implicated foods
 – Poultry and eggs

• Control & prevention
 – Cooking and refrigeration
Shigella

• Dose:
 – 10 cells

• Onset
 • Chronic aftereffects
 – Acute kidney failure
SHIGELLA

• SOURCES
 – Fecal contaminated water
 – Unsanitary handling by food handlers

• IMPLICATED FOODS?
 – Salads (potato, tuna, shrimp, macaroni, and chicken), raw vegetables, milk and dairy products, and poultry.
LISTERIA MONOCYTOGENES

• Infection
 – Mild in healthy hosts
 – Severe in high risk hosts
• Dose
 – <1,000
• Onset
 – > 12 hrs.
• Complications/after effects
 – Meningitis
 – Septicemia
 – Encephalitis
 – Spontaneous abortion or stillbirth
LISTERIA MONOCYTOGENES

• Hardy
 – resists the effects of freezing, drying, and heat
• Foods implicated?
 – Ready – To - Eat
• Control/Prevention
 – Sanitation
E. COLI TYPES

• MANY TYPES... VARIED SYMPTOMS
 – Enteropathogenic e.Coli
 • Infantile diarrhea
 • Raw meat and poultry
 – Enteroinvasive e. Coli
 • Effective dose <10
 • Human feces from an ill individual
 – Enterotoxigenic (etc)
 • “Travelers diarrhea”
ENTEROHEMORRAGIC

• Toxicoinfection
• Low infective dose
 – 10 organisms
• Types (6)
 – O157:H7
 – O11
 – O104:H21
• Aftereffects
 – Children: hemolytic uremic syndrome (HUS)
 – Elderly: thrombocytopenic purpura (TPP)
0157:H7

• SOURCES?
 – Anything contaminated with animal feces

• IMPLICATED FOODS?
 – Under cooked ground beef
CAMPYLOBACTER

- GI INFECTION
 - leading cause of bacterial diarrheal illness in the United States
 - heat-labile toxin that may cause diarrhea
- Effective dose
 - 400-500 bacteria
- Implicated foods
 - Raw chicken
 - Raw milk
YERSINIA ENTEROCOLITICIA

- Facultative Psychrotroph
- GI infection
 - Fever & abdominal pain
 - Sequelae: arthritis
- Implicated foods?
 - Meats oysters, fish, and raw milk
- Control/prevention
 - Poor sanitation
 - Improper storage
CLOSTRIDIUM BOTULINUM

• Spore former
 – Organism and its spores are widely distributed in nature
• Anaerobe
• Classic intoxication
 – Heat-labile toxin
 – High mortality
• Sausages, meat products, canned vegetables and seafood products
C. PERFRINGENS

- Spore former
- Anaerobe
- Widely distributed in the environment
- Source
 - Temperature abuse of prepared foods
- Associated foods
 - Meats, gravy, & soups
C. PERFRINGENS

• Food infection
 – $>10^8$ vegetative cells
 • Toxico-infection
• Mortality: low
BACILLUS CEREUS

• Facultative spore former
• Infection (diarrheal type)
 – Toxico-infection
 – 10^6 required for illness
• Intoxication: (emetic type)
 – Heat stable toxin
BACILLUS CEREUS

• Implicated foods?
 – Meats, milk, vegetables, and fish
 – Vomiting-type associated with rice products
 – Sauces, puddings, soups, casseroles, pastries, and salads
Vibrio cholerae O1

• **No major outbreaks** of this disease have occurred in the United States since 1911.

• Sporadic cases occurred between 1973 and 1991
 – Associated with the consumption of
 • Raw shellfish or of
 • Shellfish either improperly cooked or
 • Re-contaminated after proper cooking

• Cholera is generally a disease spread by poor sanitation

• Onset of the illness is generally sudden
 – incubation periods varying from 6 hours to 5 days.
 – Abdominal cramps, nausea, vomiting, mild, watery diarrhea to an acute diarrhea,
Vibrio cholerae Non-O1

• Gastroenteritis
 – Diarrhea, abdominal cramps, and fever are the predominant symptoms lasting 6-7 days
 – Infective dose >10^4 cells

• Shellfish harvested from U.S. coastal waters
 – Consumption
 • Raw, improperly cooked, or cooked, re-contaminated
Vibrio parahaemolyticus

- Toxcio infection
- Source
 - Marine environment of the united states
 - The illness is usually mild to moderate
- Associated foods
 - Fish and shellfish
 - Raw, improperly cooked, or cooked re-contaminated.
- Source
 - A correlation exists between infection and warmer months of the year.
 - Improper refrigeration of seafood
Vibrio vulnificus

• Associated foods
 – Plankton, shellfish (oysters, clams, and crabs), and finfish

• Gastroenteritis
 – Healthy individuals, gastroenteritis usually occurs within 16 hours of ingesting

• Consumption of raw seafood
 – Underlying chronic disease, particularly liver disease
Psychrotrophic Foodborne Pathogens

<table>
<thead>
<tr>
<th>Organism</th>
<th>Minimum Growth Temp (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus</td>
<td>42</td>
</tr>
<tr>
<td>– Clostridium botulinum</td>
<td>38</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>32</td>
</tr>
<tr>
<td>Salmonella Sp.</td>
<td>43</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>45</td>
</tr>
<tr>
<td>E. coli 0157:H7</td>
<td>32</td>
</tr>
<tr>
<td>Yersinia Enterocolitica</td>
<td>38</td>
</tr>
</tbody>
</table>
ROTAVIRUS

• Acute gastroenteritis.
 – Infantile diarrhea, winter diarrhea,
 – Self-limiting, mild to severe disease
 • Vomiting, watery diarrhea, and low-grade fever.
 – Infective dose 10-100 viral particles.
ROTAVIRUS

• Rotaviruses is transmitted by fecal-oral route.
 – Person-to-person spread through contaminated hands
 – Asymptomatic rotavirus excretion
 – Close contact environment
 – Infected food handlers contaminate RTE,
 • Salads, fruits, and hors d'oeuvres.

• Controlled by sanitary measures adequate for bacteria and parasites
ROTAVIRUS

• Stable in the environment and have been
 – Estuary
 • 1-5 infectious particles/gal.
ROTAVIRUS

• Group A rotavirus is endemic worldwide.
 – Leading cause of severe diarrhea among infants and children,
 – Accounts for half of diarrhea cases requiring hospitalization.
 –> 3 million cases occur annually in the U.S.
NORWALK VIRUS

• Viral gastroenteritis, acute nonbacterial gastroenteritis, food poisoning, and food infection

• Transmission
 – Fecal-oral
 • Contaminated water and foods.
 – Water is the most common source
 • Person-to-person transmission
NORWALK VIRUS

• Transmission
 – Shellfish and salad ingredients.
 – Ingestion of raw or insufficiently steamed clams and oysters poses.
 – Foods other than shellfish are contaminated by ill food handlers.
Hepatitis A

• A
 – in feces of infected people
 • produce clinical disease when susceptible individuals consume contaminated water or foods.
 – Infections source
 • Cold cuts, fruits and fruit juices, milk products, vegetables, salads, shellfish, and iced drinks are commonly implicated in outbreaks.
 ➢ Water, shellfish, and salads are the most frequent sources.
 • Contamination of foods by infected workers in food processing plants and restaurants is common
Hepatitis E

Infected dose is not known.

Transmission

Fecal-oral route.

Waterborne and person-to-person

To date no U.S. Outbreaks have been reported.
CHEMICAL HAZARDS

• Smaller more isolated outbreaks
• Usually accidental/misuse
• Most chronic/long term
 – Toxins usually acute
 – Long term exposure
 – Carcinogens/other toxic effects
NATURALLY OCCURRING SUBSTANCES

- Plant sources
 - Mushrooms
 - Solanine (potatoes)

- Animal sources
 - Seafood toxins

- Microorganisms
 - Mycotoxins
SEAFOOD TOXINS

• Causes >74% of chemical food poisoning (CDC)
 – HISTAMINE – SCROMBOID TOXIN
 – NEUROLOGICAL TOXINS
HISTAMINE – SCROMBOID TOXIN

• Microbial deterioration of fish
 – Morganella morganii
 – Klebsiella pneumoniae
 – Hafnia alvei
• Decarboxylation of histidine
• Allergenic type reaction
NEUROLOGICAL TOXINS

• Types
 – Molluscan shellfish
 • Paralytic shellfish poison (saxitoxin)
 • Diarrhetic shellfish poison
 • Neurologic shellfish poison
 • Domoic acid
 – Finfish
 • Ciguatoxin
NEUROLOGICAL TOXINS

• Cause
 – Dinoflagellate contaminated waters

• Control
 – Regulated waters
Mycotoxins

- Mold contamination
 - Penicillium
 - Fusarium
 - Aspergillus
 - Claviceps

- Products most affected
 - Aflatoxin
 - Corn, peanuts, cottonseed, other grains
 - Patulin
 - Apples
MYCOTOXINS

• EFFECTS
 – ACUTE -- RARE
 – CHRONIC -- CARCINOGENS
ANTIBIOTICS/HORMONES

• Meat and poultry –
 – FSIS/FDA
• Milk and milk products --
 – NCIMS/FDA
PESTICIDES

• TOLERANCE
 – EPA

• RESIDUES
 – FDA/USDA

• USE AND STORAGE
 – SOPs, GMPs

• Good Agriculture Practices
PHYSICAL HAZARDS

FOOD SAFETY VS. AESTHETICS
PHYSICAL HAZARDS

• FOREIGN OBJECTS

• ESPECIALLY
 – BONES
 – GLASS
 – METAL
PHYSICAL HAZARDS

• Acute
• Small/isolated problems
• Cause
 – Accidental
 – Sabbotage
• Risk assessment extremely difficult
SOURCES OF PHYSICAL CONTAMINATION

• RAW MATERIALS
 – SHOT PELLETS IN MEAT
• POOR DESIGN AND MAINTENANCE OF FACILITIES
• EQUIPMENT MAINTENANCE
• POOR PRACTICES IN OPERATION
• SABBOTAGE