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Introduction

As a consequence of the rumen fermentation, protein digested in the small intestine
of the ruminant is comprised of microbial protein and undegraded dietary protein that
escapes microbial digestion in the rumen (Broderick et al., 1991). Taken together, these
two sources contribute to metabolizable protein that is absorbed by the ruminant and
available to meet the ruminant’s protein requirements. Protein requirements of young
growing ruminants and productive cows often exceed the ruminal synthesis of microbial
protein. Therefore, undegraded intake protein (UIP) or “escape” protein must compliment
microbial protein in order for optimal animal performance to be realized (Orskov, 1982).
Recognition of this requirement resulted in the development of Metabolizable Protein
Systems in the United States (NRC, 1985), United Kingdom (ARC, 1984) and France
(INRA, 1988). These systems distinguish between dietary protein that is degraded in the
rumen and dietary protein that escapes ruminal degradation. Use of the Metabolizable
Protein Systems proposed by the NRC (1989, 1996) to predict protein requirements of
cattle often concludes that some dietary UIP requirement exists for high producing dairy
cows and for the following scenarios relevant to cow-calf production in Florida: 1)
managment of replacement heifers to achieve adequate rates of gain on pasture to breed

at two years of age, and 2) management of pregnant cows in negative energy balance
during late gestation.

Under conditions when the animal’s need for UIP is increased, supplementation to
increase UIP supplied by the diet is complicated by the extensive breakdown of protein
within the rumen (Broderick et al., 1991). Ruminal degradation of dietary protein to
ammonia can result in inefficient nitrogen utilization by the ruminant because ammonia
often is produced in excess of microbial requirements (Leng and Nolan, 1982). Peptides
that arise from the action of rumen microbial proteinase may be transported into microbial
cells or further hydrolyzed to amino acids. Accumulation of peptides in rumen fluid
indicate that these processes may be rate limiting in vivo (Chen et al., 1987a), peptides
can accumulate in rumen contents to concentrations exceeding 20 mg di”' (Annison, 1956;
Broderick and Wallace, 1988; Broderick and Craig, 1989; Chen et al., 1987b). A number
of authors have recognized the importance of ruminal peptide metabolism in determining
overall degradation of a dietary protein and the contribution of peptides to meeting
requirements of both ruminal microbes and host animal (Broderick and Craig, 1989, Chen
et al., 1987a,b; Williams and Cockburn, 1991). Transient accumulation of peptides in the
rumen of cattle and sheep fed different protein supplements has been reported (Annison,
1956; Broderick and Wallace, 1988; Broderick and Craig, 1989; Chen et al.; 1987b;
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Breakdown of Protein in the Rumen

Dietary protein ingested by ruminants is degraded to varying degrees in the rumen
to ammonia and volatile fatty acids. This process répresents the sum of a large number
of microbial activities including protein hydrolysis, peptide degradation, amino acid
deamination, and fermentation of resulting carbon skeletons (Cotta and Hespell, 1 986).
Ruminal digestion of protein to peptides and amino acids is carried out by microbial

1987a).

The first step of proteolysis in the rumen involves extracellular or cell associated
endoproteinases that degrade protein into large oligopeptides (Wallace and Cotta, 1988).
Both ruminal bacteria and protozoa produce proteolytic enzymes (Tamminga, 1979);
however, the predominant proteolytic organisms in the rumen are bacteria (Brock et al.,
1982; Wallace et al., 1987). Proteolytic bacteria comprise between 12 and 38% of the
total bacterial population in the rumen (Bryant and Burkey, 1953; Fulghum and Moore,
1963). Although the nature of the proteolytic population varies with diet (Wallace and
McPherson, 1987), predominant proteolytic ruminal bacteria include Prevotella ruminicola,
Ruminobacter am ylophilus, Butyrivibrio fibrisolvens, Selenomonas ruminantium,
Eubactenium ruminantium, Lachnospira muitiparus and Streptococcus bovis (Wallace and
Brammel, 1985). On the basis of cellular location, activity against various substrates, and
sensitivity to inhibitors, Wallace and Brammel (1985) concluded that the proteolytic activity
of P. ruminicola was most similar to the activity of rumen contents. Recently, Avgustin et
al. (1997) proposed the redefinition of P. ruminicola based upon phenotypic diversity
among ruminal isolates of this species. Strains related to P. ruminicola subspecies brevis
type strain GA33 were assigned to a new species, P. brevis, whereas strains related to
type strain B14 were assigned to P, bryantii. Most of the isolates formerly classified as P.
ruminicola subspecies ruminicola were placed in a redefined species called P. ruminocola.
A small group of isolates with G:C ratios lower than the other species were reclassified as
P. albensis. Proteinase activities varied widely among the new species with P. brevis
exhibiting the highest proteolytic activity. Other microbial species, however, play important
roles in ruminal proteolysis because they act cooperatively to degrade protein (Schwingel
and Bates, 1996; Wallace, 1985). For instance, synergistic interaction between S. bovis
and S. ruminantium enabled rapid growth of a co-culture of the two organisms on a
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medium containing casein as the sole nitrogen source, even though neither species was
capable of growth on this medium as a pure culture (Wallace, 1985).

The principal type of endoproteinase activity found in rumen contents is a cysteine -
protease type which is sensitive to p - chioromercurobenzoate (Attwood and Reilly, 1996).
Other types of protease activities are present, but more variable (Brock et al., 1982;
Kopecny and Wallace, 1982). These include serine - protease activity (sensitive to
inhibition by phenylmethyisuiphony! fluoride), metalo.-protease (sensitive to EDTA and 1,
10 - phenanthroline) and aspartic-protease (sensitive to pepstatin-A; Wallace and Cotta,
1988).

Oligopeptides produced by the action of ruminal proteinases are broken down in
turn to smaller peptides and amino acids. Peptide hydrolysis in the rumen follows a
distinctive pattern characteristic of dipeptidyl aminopeptidease activity (Wallace and
McKain, 1989; Wallace et al., 1990a,b). Although ciliate protozoa have more activity
against dipeptides (Wallace et al., 1990a), the ruminal hydrolytic activity most active
against oligopeptides is bacterial in origin. The hydrolysis of alanine containing peptides
of different lengths (Broderick et al., 1988; Wallace and McKain, 1991; Wallace et al.,
1990a, b) and arylamide substrates (Wallace and McKain, 1991) suggested that the
principal bacterial peptidase activity in the rumen of sheep and cattle is dipeptidy!
aminopeptidase activity type | (DAP-1). Peptidase activities of pure cultures (Wallace and
McKain, 1991) and selective isolates from rumen fluid (McKain et al., 1992) indicated that
the only predominant ruminal bacteria to possess DAP-| activity is P. ruminicola. Wallace
et al. (1993b) reported that the hydrolysis of high molecular weight oligopeptides followed
a similar pattern when P. ruminicola was compared to rumen fluid. All strains of the
redefined P. ruminicola produce DAP-I, but the relative activities against different peptide
substrates is species specific (Avgustin et al., 1997). Other species of ruminal bacteria
occupy different niches in the microbial ecosystem responsible for peptide breakdown in
the rumen; ie., Streptococcus bovis is the only rumen bacterial species with appreciable
leucine aminopeptidase activity (Wallace and McKain, 1991).

Schwingel and Bates (1996) studied the degradation of solubie soybean meal proteins by
P. brevis GA33 and mixed ruminal microorganisms in vitro using sodium dodecy! sulfate
polyacrylamide gel electrophoresis (SDS-PAGE). This technique facilitated the
quantification of peptides (molecular weight > 14 kDa) released during the partial
hydrolysis of soybean proteins. Several peptides derived from digested soybean proteins
appeared during incubations with these microorganisms; peptides with molecular weights
of 23, 28, 59 and 64 kDa accumulated in 48 hr incubations of P. brevis, whereas the
accumulation of the 23 and 29 kDa peptides was only transient (appearing at 4 and 2 hr
incubation, respectively) in incubations of mixed ruminal bacteria. The early stages of
protein degradation by mixed ruminal microbes were similar to those seen in the
degradation of soybean protein by pure cultures of P. brevis GA33; however, interactions
between P. brevis and other microorganisms appeared to be responsible for the rapid and
complete degradation of soybean proteins observed with cultures of mixed ruminal
microorganisms. N-terminal amino acid sequencing and amino acid analyses were
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digestion. A peptide of 23 kDa was of particular interest because it could be easily
isolated as a pure peptide, and its N-terminus was identical to the N-terminus of the B
subunit of B-conglycinin. The N-terminus of this peptide was NH,-leucine-lysine-valine-
arginine-glutamine-aspartic acid-glutamine-asparagine—proline-phenylaIanine—tyrosine—
leucine-arginine-serine. Wallace and McKain (1991) reported that peptides with N-termini
containing leucine were resistant to peptidolytic attack by £. ruminicola M384. In addition,
The N-termini of the 23-, 59- and 64- kDa products were enriched with basic amino acids.
The authors proposed that this characteristic may be related to the resistance of these
peptides to degradation by P. brevis.

Strategies to Limit Peptide Degradation in the Rumen

A number of authors have recently identified aspects of ruminal peptide metabolism
that may be exploited to increase the contribution of peptides to metabolizable protein.
Suggested strategies to limit ruminal peptide degradation have focussed on the 1) effect
of ionophores on ruminal peptide metabolism (Yang and Russell, 1993), 2) blocking the

of ionophores to ruminal fluid in vitro had no effect on the rate of peptide breakdown
(Wallace et al., 1990c). Chen and Russell (1991) concluded that the principal effect of
ionophores on “N sparing” in the rumen is inhibition of gram-positive, amino acid
fermenting bacteria from the genera Peptostreptococcus and Clostridium; however, use
of an rRNA approach to assess the role of these bacteria indicated that monensin can not
completely counteract the activity of these microorganisms (Krause and Russell, 1996).

An implication of the low carboxypeptidase activity in the rumen is that peptides can be
blocked effectively from degradation by compounds which react with their N-termini; i.e.,
blocking the N-terminal of the peptide Ala, reduced its rate of degradation by 89%
(Wallace and McKain, 1989). This approach represents a second strategy to limit peptide
degradation in the rumen. Although the effectiveness of N-terminal protection of peptides
would be expected to decrease as the length of the peptide increases, hydrolysis of
oligopeptides derived from a trypsin digestion of casein (Trypticase) also was inhibited by
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N-terminal modifications (Wallace et al., 1993). Sheep fed an N-acetylated peptide
mixture showed no signs of increasing ruminal carboxypeptidase activity over time
(Wallace, 1996).

The resistance of a peptide to hydrolysis also may be affected by its primary structure
(amino acid sequence) as well as secondary and tertiary structures (folding, solubility and
disulfide bridges; Broderick et al., 1991). Hydrophobic peptides are more resistant to
degradation than hydrophilic ones (Chen et al., 1987c; Depardon et al., 1996). When
Chen et al. (1987c) fractionated Trypticase with 90% (wt/vol) isopropyl alcohol, mixed
ruminal bacteria hydrolyzed the aicohol-soluble fraction (which contained a high
concentration of proline) at a much slower rate than the alcohol-insoluble peptides. Also,
peptides from Trypticase and gelatin hydrolyzate which resisted 96 hr incubation in rumen
fluid had an abundance of proline. The experiments of Yang and Russell (1992) indicated
that lysine and methionine dipeptides containing proline were degraded slowly by mixed
ruminal bacteria.

A fourth strategy employs a chelator of divalent metal cations (1, 10-phenanthroline)
which inhibits ruminal dipeptidase activity, thus decreasing degradation of dipeptides
created through the action of DAP-I (Wallace et al., 1995; Wallace et al., 1996). The main
rumen bacterial species with high dipeptidase activity (Fibrobacter succinogenes, P.
ruminicola, L. multiparus, and M. elsdinii) are affected. This inhibitor dramatically
decreased production of ammonia during an incubation of a pancreatic digest of casein
with rumen microbes.

A fifth strategy involves methods to decrease the concentration of Prevotella species in the
rumen and their associated effects on ruminal peptide breakdown. The “smugglin concept”
has been proposed as one means to selectively lower Prevotella numbers in the rumen
(Morrison and Mackie, 1996). This approach utilizes the lack of specificity shown by most
bacterial peptide permeases to promote cellular uptake of an amino acid mimetic: a toxic
compound which is transported by peptide permeases, but not by more specific amino acid
permeases (Ringrose, 1980). While most ruminal bacteria transport amino acids more
selectively than peptides, species of Prevotella transport peptides in preference to amino
acids (Pittman et al., 1967, Ling and Armstead, 1995). Protamine, a polycationic, low
molecular weight protein, has a bacteriocidal effect against strains B14 (reclassified as P.
bryantii) and D31d (reclassified as P. ruminicola), but the authors concluded that the
effects of this compound were too broad to permit its successful use in manipulating
ruminal peptidolysis (Madeira and Morrison, 1997). Species of Prevotella are some of the
most abundant ruminal microorganisms and carry out many important functions besides
protein digestion. Broderick et al. (1991) concluded that elimination of P. ruminicola
almost certainly would be counterproductive to overall rumen function.

Summary

Recent research indicates that peptides may make an important contribution to
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metabolizable protein. As our understanding of ruminal proteolysis increases, there will
be opportunities to increase the contribution of peptides, either synthetic in nature or
derived from the partial hydrolysis of feed proteins, to protein that is absorbed by the
ruminant. Strategies that currently are being researched include design of specific
peptides that are resistant to microbial peptidase activities, and alterations in the microbial
Population responsible for peptide breakdown.
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