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Introduction 
 

Forages typically account for 40 to 100 % of the ration of dairy cows and are vital 
for maintaining animal productivity and health. The high fiber content of forages is the 
main nutritional factor that differentiates them from concentrates and results in a relatively 
lower energy value. Nevertheless, fiber plays a fundamentally important role in ruminant 
livestock production, health, and welfare. In addition to being an important energy source, 
it stimulates chewing and salivation, rumination, gut motility, and health, buffers ruminal 
acidosis, regulates feed intake, produces milk fat precursors and is the structural basis of 
the scaffolding of the ruminal raft, which is vital for digestion of solid feed particles in the 
rumen. Cellulose and hemicellulose – the main components of fiber – are intrinsically 
ruminally digestible. However, their close association with lignin and hydroxycinnamic 
acids like ferulic acid in the plant cell wall is the greatest hindrance to complete digestion 
of feeds, particularly forages and byproducts, and to utilization of the nutrients and energy 
they contain. The degree of association with lignin and hydroxycinnamic acids and 
various plant anatomical features differentiate digestible from indigestible fiber. This 
paper describes the strategic importance of increasing forage fiber utilization and then 
discusses the efficacy and mode of action and benefits and disadvantages of different 
technologies for improving fiber digestion. 

 
Importance of Increasing Fiber Digestion 

 
It is critically important to increase fiber digestion for productivity, profitability and 

environmental reasons. Incomplete fiber digestion reduces the profitability of dairy 
production by limiting intake and hence, animal productivity, and increasing manure 
production. A 1-unit increase in forage NDF digestibility (NDFD) is associated with 0.17 
and 0.25 kg/d increases in DMI and milk production, respectively (Oba and Allen, 1999). 
In addition, in perennial ryegrass (L. perenne), a 5–6 % increase in digestibility was 
estimated to increase milk production by up to 27% (Smith et al., 1998). Consequently, 
each percentage unit increase in lignin concentration in forage cell walls severely 
constrains DMI and milk production.  
  

A second reason to increase fiber digestion is to increase energy supply from 
fibrous feeds that are not consumed by humans. Grains are high in energy and various 
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processes have been developed for increasing the efficiency of energy extraction from 
such feeds for ruminants and non-ruminants. However, the growing demand for grains 
due to competition with the non-ruminant feed, biofuel and human food sectors, results in 
considerable price hikes and volatility. Fibrous feeds for ruminants are less subject to 
such competing demands but their recalcitrant lignocellulose matrix reduces the 
availability of the energy they contain, necessitating effective strategies for increasing the 
rate and efficiency of utilization of forage fiber and the energy therein. 

  
It is equally necessary to increase fiber digestion for environmental reasons. 

Compared to that from starch, ruminal fermentation of fiber-derived hexoses generates 
more hydrogen ions that reduce carbon dioxide to methane. Consequently, fibrous feed 
fermentation results in greater production of methane and less energy supply than 
concentrate feeds. In addition to being a significant drain on energy supply to the cow, 
enteric methane production is a significant contributor to greenhouse gas emissions. In 
addition, enteric methane is the main source of agriculture-related methane emissions 
also, which has resulted in advocation of vegan diets for environmental reasons (Poore 
and Nemecek, 2018) and cessation of livestock production, despite the critical role 
livestock and livestock products play in human nutrition, income generation and 
livelihoods (Adesogan et al., 2018) or the fact that because ruminants convert forages 
that humans cannot consume into high quality food protein, only 14% of feed dry matter 
ingested by livestock is edible to humans (Mottet et al., 2017). Consequently, it is of 
paramount importance to increase forage fiber digestion to enhance animal productivity 
and environmental stewardship of livestock farming. 

 
Various animal, plant, and environmental factors that modulate the intake and 

digestibility of forage fiber have been described in excellent reviews (Galyean and 
Goetsch, 1993; Fales and Fritz, 2007). The main plant-based factors affecting the 
digestibility and intake of forage fiber are: 1) chemical composition of tissues in organs, 
2) tissue type and proportion within organs, and 3) organ type and proportion in plants. 
The interplay between these factors has a major effect on the intake and digestion of 
nutrients by ruminants (Jung, 2012), with chemical composition becoming more 
predominant than the other factors with increasing levels of mechanical processing. 

 
Strategies to Increase Forage Fiber Digestion 

 
Mechanical Processing. Mechanical processing is a crucial complementary step in 
forage production due to its impact on forage physical properties that cause gut fill and 
limit feed intake. Consequently, numerous studies have examined the influence of 
mechanical processing on particle size measures, typically the chop length of hay, straw, 
or silage or the particle size distribution of diets for lactating cows. Forage particle size is 
critically important in dairy cattle diets, which must contain sufficient physically effective 
NDF (peNDF; Hall and Mertens, 2017) – a combination of both physical (i.e. particle size) 
and chemical (i.e. NDF concentration) fiber characteristics (Mertens, 1997) – to stimulate 
chewing and salivation and reduce gut fill, without reducing digestibility.  In this context, 
grinding of forages or byproducts will not be discussed because it removes the physical 
effectiveness of fiber. 



  

 
Chopping. Despite the undeniable benefits of coarser forage particles on ruminal 

mat formation, chewing activity, digestion, and milk fat content (Allen, 1997; Mertens, 
1997), long forage particles may limit intake through reduced ruminal passage rate and 
increased fill (Mertens, 1987). Furthermore, they promote dietary sorting (Leonardi and 
Armentano, 2003), and enhance the time spent consuming a meal (Grant and Ferraretto, 
2018). Although particle size can be manipulated to enhance fiber digestibility, research 
findings have been inconsistent, and the outcome is not related to alterations in the 
chemical composition of forage fiber. A meta-analysis of published studies (Ferraretto 
and Shaver, 2012b) reported that digestibility of dietary NDF, DMI, and milk production 
were not altered by chop length of corn silage. This should not be surprising as fiber digestion 
is influenced by many factors and the combination of the benefits of long or short forage 
particles may be countered by the disadvantages. For instance, short forage particles 
have greater surface area for bacterial attachment, which may enhance forage 
digestibility despite their faster passage rate (Johnson et al., 1999). In contrast, coarse 
particles are retained for longer periods in the rumen and require more chewing leading 
to greater ruminal pH (Allen, 1997), which is conducive for cellulolytic bacteria and forage 
digestion in general. 

 
Shredding. Shredding ensiled whole-plant corn at harvest is an effective method 

to alter the physical characteristics of the silage. A recently developed form of silage, 
called corn shredlage, is produced when corn forage is harvested with a self-propelled 
forage harvester fitted with cross-grooved crop-processing rolls set at approximately 20% 
greater roll speed differential and chopped at a greater theoretical length of cut (22 to 26 
mm) than the norm. Despite the longer chop length used, the shredding process causes 
greater damage to coarse stover particles and kernels than conventional harvesting. 
Compared to conventionally processed silage, yields of 3.5% FCM and actual milk were 
increased by 1.0 and 1.5 kg/cow per day when whole-plant corn was harvested as corn 
shredlage using either conventional (Ferraretto and Shaver, 2012a) or brown midrib 
(BMR; Vanderwerff et al., 2015) hybrids, respectively. These results were attributed to 
the greater kernel breakage obtained by shredding whole-plant corn and the 
corresponding improvements in ruminal in situ and total tract in vivo starch digestibility 
(Ferraretto and Shaver, 2012a; Vanderwerff et al., 2015). Surprisingly, despite what 
appeared to be more thorough damage to the fibrous portion of the forage, Vanderwerff 
et al. (2015) reported that total tract NDFD was 2 percentage units lower when cows were 
fed corn shredlage instead of conventionally processed corn silage. These authors 
associated this response with the negative effects of the greater digestibility of shredlage 
starch on total tract NDFD. This premise was supported by the fact that ruminal in situ 
NDF digestibility of undried and unground corn silage samples did not differ among 
treatments. Finally, near-infrared reflectance spectroscopy-predicted 30-h NDFD was 
lower in corn shredlage (55.0 vs. 53.4% of NDF) compared to conventionally processed 
corn silage in an assessment of 3,900 commercial samples (Ferraretto et al., 2018). 
Although the benefits of harvesting corn silage with a shredlage processor are 
undeniable, some factors must be considered when evaluating the cost effectiveness. In 
addition to the costs associated with acquiring the processor (or a new self-propelled 
forage harvester), other factors such as changes in fuel usage and roll wear must be 



  

considered as they may differ from those involved in conventional processing. To our 
knowledge, this information is unavailable in the literature and should be the focus of 
future research.    

  
Pelleting. In addition to the aforementioned effects of particle size, pelleting may 

enhance handling, storage and transportation (Bonfante et al., 2016), and it enhances the 
use of certain bulky forage or crop residues as livestock feeds (Mani et al., 2006). The 
use of forage pellets, however, is not a new concept. For example, Clifton et al. (1967) 
evaluated coastal Bermudagrass (Cynodon dactylon (L.) Pers.) fed as either silage or 
pellets. Cows fed forage pellets had greater intake but did not have greater animal 
performance.  Caution is needed when forages are fed as pellets to due to the risk of 
acidosis from the reduced saliva production and resulting reduction in ruminal acid 
buffering caused by pelleting, but the effect may depend on the production stage of the 
cows. Bonfante et al. (2016) fed a pelleted TMR to growing heifers and did not observe 
adverse effects on ruminal health, though the authors advocated examining the pellets 
for longer feeding periods. Total tract digestibility of the potentially digestible NDF fraction 
was reduced, presumably due to reduced ruminal retention time. This suggests that using 
pelleted TMR for growing heifers may not adversely affect rumen health, but caution is 
needed to ensure digestibility is not reduced. In contrast, when alfalfa (Medicago sativa 
L.) pellets were substituted for alfalfa hay to induce subacute ruminal acidosis in dairy 
cows (Khafipour et al., 2009; 8% - unit increments from 50 to 10%, DM basis) over 6 
weeks without altering forage to concentrate ratio and starch concentration, a gradual 
increase in consumption of pellets instead of hay was evident but yields of milk and milk 
fat and ruminal pH decreased in a linear manner. The latter results emphasize that 
pelleting TMR for lactating cows can be detrimental and reinforces the need to account 
for peNDF during diet formulation.  
 
Genetic Improvement 
 
 Brown-midrib mutants. Improvements to fiber digestibility of forages are often 
accomplished by reducing lignin or indigestible NDF concentrations (Grant and 
Ferraretto, 2018). Brown midrib mutant forages (e.g., corn and sorghum) consistently 
have lower lignin concentrations compared to conventional forages (Sattler et al., 2010) 
resulting in greater milk production when the BMR forages are fed. In this context, several 
studies have reported greater DMI, passage rate, and rate of NDF digestion in cows fed 
BMR compared to conventional corn silage (Oba and Allen, 2000; Ebling and Kung, 
2004). In a meta-analysis of published studies, Ferraretto and Shaver (2015) reported 
increases in total tract NDFD (44.8 vs. 42.3% of intake), DMI (24.9 vs. 24.0 kg/d), yields 
of milk (38.7 vs. 37.2 kg/d) and protein (1.18 vs. 1.13) for cows fed BMR diets instead of 
conventional corn silage diets. These benefits are associated with lower rumen gut fill as 
conventional forage-based diets may have lower rates of passage and digestion, causing 
physical constraints in the rumen (Allen, 1996) that limit intake.  

 
As for corn, BMR sorghum (Sorghum bicolor) has lower lignin concentration and greater 

fiber digestibility compared to conventional sorghum (Sattler et al., 2010). A meta-analysis 

by Sánchez-Duarte et al. (2019) compared conventional to BMR sorghum silage 



  

(BMRSS) in diets for dairy cows and revealed that cows fed BMRSS had greater intake 

(+0.8 kg/d), milk production (+1.6 kg/d) and milk fat concentration (+0.09%-units) than 

cows fed conventional sorghum. In addition, when compared with conventional corn 

silage, cows fed BMRSS had greater milk fat (+0.10%-units) but lower milk protein (-

0.06%-units) concentrations. No differences in intake and milk yield were observed. Such 

BMR hybrids would be particularly desirable in areas or situations unsuitable for corn 

production. Some studies have shown that lodging can be a problem for some BMR 

sorghum hybrids particularly when sown at high seeding rates (Pedersen et al., 2005), 

but the incidence may be reduced by increasing plant spacing or planting brachytic dwarf 

hybrids that are less prone to lodging (Bernard and Tao, 2015). 

Genetic improvement is resulting in BMR hybrids that are higher yielding than 
earlier hybrids. Nevertheless, it is important to account for lower yields of certain BMR 
hybrids than conventional hybrids when deciding on which hybrid to grow. Such lower 
yields may be outweighed by the improved animal performance from BMR hybrids but 
the magnitude of the improvements may vary from farm to farm based on the prevailing 
conditions. Producers should consider establishing guidelines for using BMR hybrids 
such as feeding them to high-producing cows in early lactation while feeding less 
digestible conventional hybrids to cows in mid-to-late lactation. Such guidelines should 
be based on recommendations of animal nutritionists and agronomists who are familiar 
with the prevailing conditions on the dairy farm. 

 
Reduced-lignin alfalfa. Feeding reduced-lignin alfalfa to dairy cows has been 

studied for over a decade. Guo et al. (2001) examined the lignin concentration and 
IVNDFD of 6 independent transgenic alfalfa lines with reduced lignin concentration 
compared to control lines (non-transgenic) and reported a range from 13 to 29% in lignin 
concentration. Furthermore, they observed an increase of 8% in IVNDFD for one of these 
transgenic lines compared to its isogenic counterpart. Mertens and McCaslin (2008) fed 
transgenic alfalfa hay with reduced lignin concentration (5.3 vs. 5.8% of DM) to young 
lambs and observed greater NDF intake (1.6 vs. 1.42% of BW/d) and digestibility (57.5 
vs. 49.1% of NDF intake) compared to a non-transgenic line. When this same transgenic 
alfalfa variety was fed to dairy cows by Weakley et al. (2008), total tract NDFD was greater 
for cows fed transgenic compared to non-transgenic alfalfa but no differences in DMI, milk 
yield or milk fat concentration were observed. Li et al. (2015) tested effects of 2 transgenic 
alfalfa cultivars (Roundup-ready vs. Roundup-ready low-lignin) and reported greater in 
vitro total tract NDFD for the low-lignin alfalfa. This response was primarily driven by 
alterations in the NDF to lignin ratio as lower NDF (30.1 vs. 31.6% of DM) but similar lignin 
(5.6 vs. 5.5% of DM) concentrations were reported for the Roundup-ready conventional 
versus Roundup-ready low-lignin cultivar. However, no peer-reviewed dairy cow feeding 
studies on low-lignin alfalfa was found, so caution is required when interpreting these 
results; further studies evaluating responses of dairy cows are warranted.  As for BMR 
hybrids, it is important to account for potential variations in yields and prices when 
choosing between reduced-lignin alfalfa and conventional varieties.  
 
Chemical Treatment 
 



  

Alkali treatment. Alkali treatments break hemicellulose-lignin and lignocellulose 
bonds, hydrolyzing uronic and acetic acid esters, and disrupting cellulose crystallinity by 
inducing cellulose swelling (Jung and Deetz, 1993). These processes increase cell wall 
degradability and enable ruminal microorganisms to attack the structural carbohydrates 
and increase degradation of hemicellulose and cellulose (Jung and Deetz, 1993; Sun et 
al., 1995). Additionally, alkali treatment has potential to degrade lignin, thereby increasing 
its water solubility and allowing it to be removed from the cell wall (Chesson, 1988). 
Various alkalis including ammonia, sodium hydroxide (NaOH), calcium oxide (CaO) and 
calcium hydroxide (Ca(OH)2) have been used to increase fiber digestion and hence 
nutritive value of low quality forages, particularly crop residues (Singh and Klopfenstein, 
1998).  However, their widespread adoption to improve forage quality has been hindered 
by factors like the cost of application, the hazardous nature, or their corrosiveness. 

 
Ammoniation. Improves forage digestibility by hydrolyzing linkages between 

lignin and structural polysaccharides (Dean et al., 2008).  Ammoniation of low quality 
forages like bermudagrass hay (Dean et al., 2008; Krueger et al., 2008), Bahiagrass hay 
(Krueger et al., 2008), cereal straws including barley, wheat, and oat (Horton and Steacy, 
1979) has resulted in improved intake, increased DM and NDF digestibility, and N 
concentration, and improved milk production (Kendall et al., 2009). However, the effects 
of feeding ammoniated forages on lactation performance by cattle are not consistent 
(Brown et al., 1992). Also, ammoniation has not gained widespread commercial 
acceptance due to its high cost, and caustic effect of the alkali when inhaled or ingested 
excessively by humans and animals (Krueger, 2006). Urea treatment is a safer and easier 
method of ammoniation that poses far less handling and safety risks (Sundstol and 
Coxworth, 1984). In addition, it is easy to transport and store. However, the amount of 
urease activity and moisture content of forages determine the efficacy of urea treatment, 
as both are required for the formation of ammonia from urea. 

 
Ammonia-fiber expansion. The ammonia-fiber expansion (AFEX) is an 

alternative to direct ammoniation that combines chemical and physical treatments. The 
method involves ammoniating low quality forages at high temperature and pressure, with 
subsequent pressure release and ammonia removal (Campbell et al., 2013; Griffith et al., 
2016) or recycling. Recently, Griffith et al. (2016) reported 35 and 27% greater in vitro dry 
matter digestibility (IVDMD) and IVNDFD due to AFEX treatment of barley straw. Mor et 
al. (2018) reported improved nutrient digestibility (DM, OM, CP, NDF, and ADF) of AFEX-
treated wheat straw. However, acetamide, a co-product of the AFEX treatment (Weimer 
et al., 1986) may remain with the treated biomass. Early research indicates that ruminal 
accumulation of acetamide from AFEX treatment is transient in the rumen because 
certain ruminal bacteria can grow on the amide (Mor and Mok, 2018). More research on 
the effects and fate of residual acetamide in cattle fed AFEX-treated forages is needed to 
ensure that meat and milk are not contaminated.  

 
Sodium hydroxide. Sodium hydroxide treatment originally entailed soaking 

forage with the dilute alkali for several days followed by washing to remove unreacted 
residues (Jackson, 1977). This was effective at improving in vitro OM digestibility of a low-
quality forages like rye straw from 46 to 71% (Sundstol, 1988), but it contributes to 



  

environmental pollution via the effluent. The dry method of NaOH treatment involves 
spraying dilute NaOH onto the forage without rinsing prior to feeding. Treating rice straw 
with 4% NaOH via the dry method improved net energy value and increased DMI, and 
growth performance in steers and feeder lambs (Garrett et al., 1974). Similarly, NaOH 
treatment (4% DM basis) of corn stalks wetted with 50% moisture from added water 
increased OM digestibility by 20% compared to untreated stalks (Klopfenstein et al., 
1972). The main advantage of the dry method is that it is less labor intensive and issues 
with wastewater pollution are avoided. However, because excess NaOH is not rinsed off, 
there are greater chances of toxicity if forage samples are not uniformly treated.  Like 
ammonia, NaOH is caustic and hazardous. 

 
Calcium oxide or calcium hydroxide. Alternatives to ammonia and NaOH are 

less hazardous alkalis such as CaO and Ca(OH)2. Wanapat et al. (2009) observed greater 
DMD and 3.5% FCM production by dairy cows fed rice straw treated with a combination 
of urea (2.2%) and Ca(OH)2 (2.2%). Chaudhry (1998) treated wheat straw with CaO and 
reported greater OM, NDF and ADF digestibility. Similarly, Shreck et al. (2015) reported 
greater DMI, feed efficiency, and average daily gain in beef steers with diets containing 
5% CaO treated-corn stover or wheat straw compared to diets using the untreated 
forages.  

 
Acid treatment. Acid hydrolysis for pretreatment of lignocellulosic materials is 

hydrolyzes hemicellulose, decreases cellulose crystallinity, and increases the porosity of 
treated biomass (Sun and Cheng, 2005). To foster ease of handling and cost-
effectiveness, dilute acid treatment is preferred. Torget et al. (1990) treated switchgrass 
with dilute sulfuric acid (H2SO4; 0.45-0.50%, v/v) and reported 95% xylan hydrolysis and 
concomitant improvement in cellulose digestibility. Similar results were observed with 
dilute H2SO4 pretreatment of corn cobs and corn stover (Torget et al., 1991).  Acid 
hydrolysis can also improve subsequent enzyme-mediated increases in cell wall 
digestibility by increasing the pore size of the treated material as reported for corn stover 
(Ishizawa et al., 2007). However, acid pretreatment is not widely used of the cost, health 
hazards and corrosive nature of the acids.  

 
Studies have also reported use of inorganic (H2SO4) and organic acids (formic 

acid) as silage preservatives (O’Kiely et al., 1989; Henderson, 1993). Sulfuric acid 
reduces the pH of forage thereby inhibiting the activity of undesirable bacteria such as 
enterobacteria and clostridia, and stimulating lactic acid bacteria; however, the effects on 
animal performance are not promising (O’Kiely et al., 1989). Organic acids, in particular 
formic acid, induce antibacterial activity and restrict the activity of lactic acid-producing 
bacteria thereby conserving water soluble carbohydrates for animals (Bosch et al., 1988). 
Studies have reported decreased acetic acid, lactic acid, and ammonia-N concentrations 
along with greater sugar concentrations with formic acid-treated alfalfa (Nagel and 
Broderick, 1992) or ryegrass (Mayne, 1993), compared to the control silage. The effects 
of feeding formic acid treated silage on animal performance are inconsistent. The use of 
acids as silage preservatives has declined due to their corrosive effects on machinery and 
potential health hazards for humans (Lorenzo and Kiely, 2008). Ammonium tetraformate 
is a buffered form of formic acid, which is less corrosive in nature and easier to handle. 



  

Broderick et al. (2007) fed ammonium tetraformate-treated alfalfa silage to lactating dairy 
cows and reported greater DMI, and yields of milk, milk protein, FCM and greater N-
efficiency compared to untreated alfalfa silage. 
 
Exogenous Fibrolytic Enzymes 
 

Cellulase-xylanase enzymes. Limited understanding of the composition and 
mode of action of exogenous fibrolytic enzymes (EFE) has restricted the development of 
effective EFE preparations that consistently improve fiber digestion and the performance 
of cattle (Beauchemin and Holtshausen, 2010; Adesogan et al., 2014). The effects of EFE 
on forage nutritive value are influenced by various factors including the dose, activity and 
composition (Eun and Beauchemin, 2007), proteomic profile (Romero et al., 2015a), 
prevailing pH and temperature (Arriola et al., 2011), presence of metal ion cofactors (Ca2+, 
Co2+, Fe2+, Mg2+, and Mn2+) (Romero et al., 2015b), animal performance level 
(Schingoethe et al., 1999), and the dietary fraction to which the EFE is applied (Dean et 
al., 2013).  

 
The effects of EFE in ruminant diets can be classified as pre-ingestive, ruminal, 

and post-ruminal (McAllister et al, 2001). When EFE are applied to fibrous substrates 
before feeding, fiber hydrolysis can be observed as partial solubilization of NDF and ADF 
and release of sugars and free or monomeric hydroxycinnamic acids (Krueger et al., 
2008; Romero et al., 2015c). These factors may contribute to improvements in in vitro 
fiber digestibility (Romero et al., 2015a) and microbial growth (Forsberg et al., 2000). 
Adding EFE to the diet increases the hydrolytic capacity of the rumen mainly due to 
increased bacterial attachment (Wang et al., 2001) and stimulation of ruminal microbial 
populations (Nsereko et al., 2002). Furthermore, Morgavi et al. (2000) showed that 
synergism between EFE and ruminal microbes enhanced ruminal cellulose, xylan and 
corn silage digestion. Adding EFE may also increase the hydrolytic capacity of the rumen 
by adding complementary enzyme activities that are absent. For instance, rumen 
metagenomic and metatranscriptomic studies have shown that the glycoside hydrolase 
family GH7 is absent in the rumen but is present in certain aerobic microorganisms (Dai 
et al., 2015).  

 
Application of EFE often increases fiber hydrolysis and NDFD of forages, which 

partially explains their ability to improve animal performance. A recent meta-analysis of 
published studies reported that EFE application to dairy cow diets resulted in an increase 
in milk yield (0.83 kg/d) and this was attributed to a tendency for EFE to improve NDF 
and DM digestibility (Arriola et al., 2017). This meta-analysis also reported that application 
to the TMR instead of the concentrate or forage tended to improve milk protein 
concentration. Another recent meta-analysis reported an increase in milk yield (1.9 kg/d) 
when cows were fed enzyme-treated diets containing high forage to concentrate ratios (≥ 
50%), but no increase occurred when diets with low forage to concentrate ratios (< 50%) 
were fed (Tirado-Gonzalez et al., 2017). The latter study reported also that cellulose-
xylanase enzyme treatment of high-forage, legume-based diets increased milk production 
by cows (2.3 kg/d) as did xylanase treatment of high-forage grass-based diets (3.1 kg/d). 

 



  

Though the meta-analyses cited above indicate that overall effects of EFE on fiber 
digestion and milk yield by dairy cows are positive, the results of individual studies have 
been variable.  This is partly because of inadequate understanding of enzyme 
nomenclature and activity, which results in some ineffective preparations (Adesogan et 
al., 2014), degradation of enzymes and loss of their activities in the rumen (Colombatto 
and Beauchemin, 2003; Arriola et al., 2017), adaptation of enzymes developed for paper, 
textile and other applications for ruminant nutrition (Beauchemin et al., 2003; Adesogan 
et al., 2014) and formulation of enzyme products that do not complement ruminal enzyme 
activities (Ribeiro et al., 2018). Recent approaches like proteomics, metagenomics and 
metatranscriptomics, are providing a better understanding of the structure, interaction, 
and functions of the ruminal microbial community (Meale et al., 2014). The knowledge 
generated by these new techniques should be exploited in formulating enzyme 
preparations that will persist in the rumen and effectively and consistently improve fiber 
digestion. 

 
Esterase and etherase enzymes. When ferulic acid cross-links arabinoxylans 

and lignin via ester and ether linkages, in plant cell wall, the extent of digestion is reduced 
dramatically (Jung and Deetz, 1993). Jung and Allen (1995) hypothesized that the ester 
portion of the ferulic acid bridge is not available to enzymes because the lignin polymer 
is in such close proximity, impeding substrate attachment. Ferulic and p-coumaric acid 
esterases have been used recently to increase the potency of EFE in ruminant diets 
(Beauchemin et al., 2003; Krueger et al., 2008).  

 
Etherase enzymes are required to hydrolyze ether linkages and release ether-

linked ferulic acid from cell walls but they are produced rarely by fungi and are not present 
in the rumen environment. Mathieu et al. (2013) reported no β-etherase activity from 26 
fungal strains (including Humicola grisea, Aspergillus sp. and Trichoderma viride) within 
3 ecological groups (white, brown, and soft - rot fungi) cultured with Tien and Kirk medium 
and supplemented with or without sawdust. The authors concluded that cleavage of β-
aryl ether linkage by extracellular β-etherase is a rare and nonessential activity among 
wood-decaying fungi. 

 
Bacterial inoculants. Applying EFE with microbial inoculants to forages at 

ensiling is beneficial as they may hydrolyze plant cell walls into sugars that serve as 
fermentation substrates, thus improving silage fermentation, nutrient preservation and 
utilization of the silage by animals (Muck and Bolsen, 1991). Consequently, some silage 
inoculant preparations contain fibrolytic enzymes, mainly cellulases or xylanases, and 
some studies have reported increased silage NDFD due to application of such products 
(Filya and Sucu, 2010; Queiroz et al., 2012).  

 
Certain inoculants contain bacteria that secrete fibrolytic enzymes including 

cellulases, xylanases, and ferulic acid esterase (FAE) that may contribute to increased 
fiber digestion. Addah et al. (2011) reported that using a mixed bacterial culture containing 
L. buchneri LN4017 that produces FAE, and contains L. plantarum and L. casei, 
increased in situ NDF disappearance after 24 and 48 h of incubation by 40.5 and 14.5 %, 
respectively. Unfortunately, the enzyme activities or enzyme-secreting ability of inoculant 



  

bacteria are rarely declared on inoculant labels.  Nevertheless, in recent meta-analyses, 
although no effects on NDFD were observed when bacterial homofermentative and 
facultative heterofermentative inoculants were applied to forages, milk yield was improved 
(Oliveira et al., 2017). More information is needed on the enzyme activities produced by 
inoculant bacteria, as this may lead to development of inoculants that are more potent at 
increasing fiber digestion. 
 

Expansins. Expansins and expansin-like proteins are a recently discovered group 
of non-hydrolytic proteins with the unique ability to induce cell-wall relaxation or loosening 
(Cosgrove, 2000). They are relatively small proteins (between ~26 to 28 kDa) with 
disruptive activity that weakens cellulose fibers thereby enhancing accessibility and 
hydrolysis by cellulases and hemicellulases (Kim et al., 2009). Perhaps the most 
remarkable characteristic of expansins and expansin-like proteins is their ability to 
synergize with EFE to increases hydrolysis of cellulose and hemicellulose (Kim et al., 
2009; Bunterngsook et al., 2015; Liu et al., 2015). Previous studies have demonstrated 
that synergistic effects between BsEXLX1 and exogenous fibrolytic enzymes (EFE) 
increased hydrolysis of cellulose and hemicellulose more than 5-fold compared to EFE 
alone (Kim et al., 2009). Recently, it was demonstrated that BsEXLX1 has greater affinity 
towards substrates with high concentrations of lignin (Kim et al., 2013), which further 
confirms that they may be particularly effective at increasing the efficacy of EFE at 
digesting the forage lignocellulose complex, particularly in C4 grasses and legumes, 
which tend to be more lignified than C3 grasses.   

 
The recombinant expression of expansin and expansin-like protein is currently the 

only viable method to study these proteins due to lack of commercially available products. 
Bacterial expansin-like proteins (BsEXLX1) from Bacillus subtilis have been used as the 
gold standard to study the disruptive effects of expansins and expansin-like proteins on 
hydrolysis of cellulose. Preliminary studies have shown greater IVDMD and IVNDFD of 
bermudagrass silage by approximately 4% and 16%, respectively by applying both 
additives instead of the EFE alone (Pech-Cervantes et al., 2017). In contrast, no 
synergistic increases in IVDMD or IVNDFD were observed with corn silage (Pech-
Cervantes et al., 2017).  
 

Live yeast, yeast culture and yeast fermentation products. Yeast products 
include live yeast, yeast culture and yeast fermentation products that can be produced 
from different strains of Saccharomyces cerevisiae. Various studies have shown that 
yeast products improved fiber utilization and animal performance (Ferraretto et al., 2012; 
Jiang et al., 2017a). However, some studies have shown that they did not improve nutrient 
digestibility (Ouellet and Chiquette, 2016), dairy cow performance (Ferraretto et al., 
2012), or ruminal fermentation and microbiome composition (Bayat et al., 2015). A meta-
analysis by Desnoyers et al. (2009) showed that adding live yeast to dairy cow diets 
increased OM digestibility by 0.8 percentage-units, DMI by 0.44 kg/d, and milk yield by 
1.2 kg/d by dairy cows. Similarly, in another meta-analysis by Poppy et al. (2012), yeast 
culture addition to the diet increased milk and milk fat and protein yields by 1.18, 0.06, 
and 0.03 kg/d. Increases in milk production by yeast supplementation may be due to 
improvement in fiber utilization. 



  

 
Yeast supplementation has decreased lactate production and enhanced lactate 

utilization (Lynch and Martin, 2002); thereby stabilizing ruminal pH and increasing NDFD 
(Marden et al., 2008). In addition, live yeasts have the ability to scavenge O2 and reduce 
the redox potential of ruminal fluid (Newbold et al., 1996). These changes supposedly 
make the ruminal environment more conducive for the growth of anaerobic 
microorganisms including cellulolytic bacteria (Newbold et al., 1996; Marden et al., 2008). 
Additionally, yeast product supplementation may provide soluble growth factors such as 
vitamin B, amino acids, and organic acids that are beneficial for the growth of major 
cellulolytic bacteria (Callaway and Martin, 1997; Jiang et al., 2017 a, b). 

 
Overall, supplementation with live yeast or yeast culture increased milk yield by 

dairy cows but the magnitude of the response varies with the lactation stage of cows, the 

yeast product, diet composition and stressors on the cow. Therefore, future studies 

should aim to optimize yeast products to achieve consistent improvements in fiber 

digestion and animal performance over a wide range of conditions. In addition, research 

should identify the relative importance of the main active ingredients of yeast products, 

particularly yeast cultures or fermentation products to determine their mode of action. 

White-rot fungi The white-rot fungi achieve lignin depolymerization through the 

activity of their ligninolytic enzymes, which include lignin peroxidase, manganese 

peroxidase, versatile peroxidase, laccase, and H2O2-forming enzymes (such as (methyl) 

glyoxal oxidase and aryl alcohol oxidase) (Wong, 2009; Sindhu et al., 2016). In addition, 

white-rot fungi also use extracellular reactive oxygen species, which may initiate 

lignocellulose decay, as lignocellulose-degrading enzymes are too large to penetrate an 

intact cell wall (Srebotnik et al., 1988, Blanchette et al., 1997). In addition to ligninolytic 

enzymes, certain white-rot fungi also produce cellulose-degrading enzymes (β-

glucosidase, cellobiohydrolase, and β-xylosidase) (Vrsanska et al., 2016), resulting in 

simultaneous degradation of lignin and cellulose components by several strains 

(Trametes versicolor, Heterobasidium annosum, and Irpex lacteus). Consequently, white-

rot fungi can improve digestibility and nutritive value of low-quality forages such as wheat 

straw and bermudagrass (Akin et al., 1993, Nayan et al., 2018).  Tuyen et al. (2012) 

reported that 9 of 11 species of white-rot fungi increased in vitro NDF and ADF 

digestibilities of wheat straw.  However, excessive carbohydrate degradation is one of the 

main drawbacks to using some strains of white-rot fungi to improve utilization of fiber by 

ruminants (Wong, 2009, Sarnklong et al., 2010). Nonetheless, considerable variability in 

fiber degradation potential exists among different strains of the same species. 

Few studies have involved feeding white rot fungi to animals. A notable exception 

is the study of Fazaeli et al. (2004) in which treatment of wheat straw with a lignin-

selective strain, Pleurotus ostreatus (P-41) increased DMI (12.2 vs. 10.6 kg/d), DM 

digestibility (58.8 vs 52.3 %), NDFD (42.3 vs. 34.3 %), milk yield (9 vs. 7.5 kg/d), and BW 

gain (743 vs. 272 g/d) of dairy cattle in late lactation. Similarly, Shrivastava et al. (2014) 

reported greater DMI (per kg metabolic BW), DM digestibility (57.82 vs. 52.07 %), NDFD 



  

(53.3 vs. 45.8 %) and 50 g/d higher average BW gain, when buffalo calves were fed wheat 

straw treated with Crinipellis sp. RCK-1 instead of untreated wheat straw.  

Despite these positive responses, white-rot fungi are not widely used for increasing 

ruminant fiber digestion due to the long pretreatment time required (van Kuijk et al., 2015) 

and more importantly, the risk of degradation of digestible carbohydrates, thus reducing 

the nutrient content and digestibility of the residual forage. While careful strain selection 

can help minimize such problems, it should be noted that laccase, is a potential inhibitor 

of cellulase activity (Moreno et al., 2012; Yingjie et al., 2018) and fungal delignification is 

an aerobic process (van Kuijk et al., 2015) that does not occur in the anerobic rumen. 

  Brown-rot fungi. Brown-rot fungi can degrade lignocellulose polysaccharides by 

supposedly modifying rather than removing lignin (Highley, 1991) and producing enzymes 

that selectively depolymerize cellulose and hemicellulose, leaving a brown-colored rot 

(Gao et al., 2012). The modifications to lignin include demethylation, hydroxylation, and 

side chain oxidation (Arantes et al., 2012; Martinez et al. 2011).  

Several studies have used brown-rot fungi to pretreat biomass for biofuel 

production, but few animal nutrition studies have used them to increase fiber utilization in 

ruminant diets. Gao et al. (2012), pretreated corn stover with different strains of white- 

and brown- rot fungi and reported that the greatest conversion of cellulose to glucose 

occurred with a strain of brown-rot fungi, G. trabeum (KU-41), after 20 days of 

pretreatment. These authors reported 32.0 and 31.4% conversion of xylan to xylose with 

2 strains of G. trabeum, KU-41 and NBRC6430, respectively, compared to 11.2% for the 

control treatment, after 48 h of enzymatic hydrolysis. El-Banna et al. (2010) reported that 

in vivo digestibility of CP, NDF, ADF, hemicellulose and cellulose of sugarcane bagasse 

treated with the brown rot fungi, Trichoderma reesei (F-418), were increased compared 

to the untreated control, when fed to sheep. The authors reported that incubation of crop 

residues (bean straw, rice straw, corn stalk and sugarcane bagasse) with T. reesei for 14 

days decreased concentrations of NDF and ADF by 14.4 and 10.0%, respectively. 

Furthermore, NDFD was increased when brown-rot fungi-treated bean straw was fed to 

sheep (El-Banna et al., 2010). However, Nurjana et al. (2016) reported that a different T. 

reesei strain, QM6a, decreased NDF and ADF concentrations of Napier grass but did not 

affect NDFD. 

Lack of in vitro and in vivo studies to examine digestibility and animal performance-

enhancing effects of brown-rot fungi are attributable to the long pretreatment time, the 

need for aerobic conditions for the treatment, and the fact that certain strains of brown-

rot fungi degrade desirable polysaccharides, which could reduce the residual nutrient 

content of treated forages.  More research is needed to identify strains that remove or 

modify lignin in ways that increase accessibility to cellulose and hemicellulose, without 

degrading these beneficial polysaccharides. 

 
Summary 

 



  

Using brown midrib hybrids has been among the most consistent, cost effective 
and adopted strategies to increase forage fiber digestion and milk production by dairy 
cows. In this context, more research is needed to examine and validate the efficacy and 
cost effectiveness of other genetic technologies like low-lignin alfalfa or grasses, seedling-
ferulate ester mutants, and transgenic fibrolytic-enzyme secreting forages. Mechanical 
treatment methods that reduce forage particle size vary in effects on fiber digestibility 
depending on the particle size achieved. A balance between maintaining physical 
effectiveness of the fiber and reducing the particle size is critical for such approaches 
even when they increase intake and facilitate handling and transport of feeds. Chemical 
treatment methods of improving fiber digestibility are consistently effective, but their 
widespread adoption has been limited by their caustic nature and high costs. Among the 
biological treatment techniques, some (yeast products, enzymes and inoculants) have 
increased fiber digestion and milk production by dairy cows in recent meta-analyses 
though responses in individual studies have varied. Omic technologies should be 
exploited to make such products more potent and consistently effective. Other biological 
treatments (brown and white rot fungi) have considerable potential to improve fiber 
utilization provided strains used avoid or minimize carbohydrate degradation. 
Combination treatments like Ammonia-Fiber Expansion or steam-pressure-thermal 
treatment can reduce the integrity of fiber and increase the digestibility but they are not 
feasible on farms, as they occur in reactors.  More studies on the cost effectiveness of 
feeding the products are needed as well as studies on adapting the technology for on-
farm use.  
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