EFFECT OF PHENOTYPIC CHARACTERISTICS AND PRECONDITIONING GAIN ON FEEDLOT PERFORMANCE AND CARCASS CHARACTERISTICS OF BEEF CATTLE

> Jesse D. Savell University of Florida

Introduction

- Preconditioning
 - Prepare the calf for a later stage of production
 - Reduce the incidence of BRD
 - Transition period
 - Evaluate calves individually

Introduction

 Preconditioning has been shown to decrease feedlot morbidity and mortality by 6% and 0.7%, respectively. (Cole, 1985)

• Market premiums have been associated with preconditioning due to the improved health status of the calves. (Minert et al., 1988)

Introduction

- Factors affecting calf value
 - Weight
 - Sex
 - Brahman percentage
 - Condition Score
 - Color
 - Color Pattern

Are any of these factors really predictive of future performance?

Objectives

 Quantify the effect of preconditioning performance on feedlot performance and carcass characteristics.

Objectives

- Evaluate easily measurable and economically important traits on preconditioning performance, feedlot performance, and carcass characteristics.
 - Brahman percentage
 - Condition score
 - Color
 - Color pattern

 Calves were weaned from a South Florida cow/calf operation.

 Calves were processed on the day of weaning at a preconditioning yard in North Central Florida.

- During processing calves were...
 - Weighed individually
 - Identified electronically
 - Vaccinated
 - Fire branded
 - Sorted into uniform lots
 - Calves were processed at 89 hd/hr

- Brahman percentage was estimated and categorized as
 - 0 Brahman
 - 1/8 Brahman
 - 1/4 Brahman
 - 3/8 Brahman

- Condition scores were categorized as
 - Slightly Thin
 - Average
 - Slightly Fleshy

- Colors that were present were
 - Black
 - Red
 - Yellow
 - Grey
 - White

- Color pattern was categorized as
 - solid patterned
 - non-solid patterned

 Non-solid patterned calves included spotted and brindle calves.

- Calves were preconditioned for 43d (34-51d) on pasture.
- A commercial supplement was fed at 3% of live body weight.
- 1100 steers and 421 heifers that comprised the large weight class were shipped to a feedlot operation in Kansas.

- Calves were harvested at a commercial meat packing facility based on 1 of 4 criteria.
 - Target Backfat
 - Cost of Gain = Sale Price
 - Minimum Weight
 - Maximum Weight

- Hot Carcass Weight
- Quality Grade
 - Prime
 - Upper 2/3 Choice
 - Low Choice
 - Select
 - Standard

 Ribeye Area/cwt and Yield Grade were calculated using data collected at the packing plant.

Preconditioning ADG

Effect of Preconditioning ADG on Feedlot ADG

P=0.54

Effect of Preconditioning ADG on Feed Efficiency

P<0.05

Effect of Preconditioning ADG on Cost of Gain

As Preconditioning ADG increased by 1 lb, Cost of Gain decreased by 4.4 cents/lb. (P<0.05)

Effect of Preconditioning ADG on Hot Carcass Weight

As Preconditioning ADG increased by 1 lb, Hot Carcass Weight increased by 19.5 lbs. (P<0.0001)

Preconditioning ADG Summary

- Preconditioning ADG was not a good predictor of Feedlot ADG
- As Preconditioning ADG increased
 - Feed Efficiency improved for steers and heifers
 - Cost of Gain was reduced
 - Hot Carcass Weight increased
 - No effect on Quality Grade or Yield Grade was observed

Estimated Brahman Percentage

Effect of Brahman Percentage on Preconditioning ADG

P<0.05

Effect of Brahman Percentage on Feedlot ADG

As Brahman percentage increased by 1/8, Feedlot ADG decreased by 0.07 lb/d. (P<0.0001)

Effect of Brahman Percentage on Hot Carcass Weight

As Brahman Percentage increased by 1/8, Hot Carcass Weight decreased by 19.5 lbs. (P<0.0001)

Effect of Brahman Percentage on Quality Grade

P<0.01

Effect of Brahman Percentage on Ribeye Area

Effect of Brahman Percentage on Ribeye Area/cwt

P=0.47

Brahman Percentage Summary

- As Brahman percentage increased,
 - Preconditioning ADG increased
 - Feedlot ADG decreased
 - Hot Carcass Weight declined
 - Quality Grade declined
 - No difference in REA/cwt was observed

Condition Score

Condition Score

Effect of Condition Score on Preconditioning ADG

P=0.07

Effect of Condition Score on Feedlot ADG

P<0.0001

Effect of Condition Score on Cost of Gain

P<0.0001

Effect of Condition Score on Hot Carcass Weight

As Condition Score increased, HCW decreased by 13.4 lbs. (P<0.001)

Condition Score Summary

- As Condition Score increased,
 - Preconditioning ADG decreased
 - Feedlot ADG decreased
 - Cost of Gain increased
 - Hot carcass weight decreased
 - No differences in Quality Grade or Yield Grade were observed
Coat Color

Coat Color

 The results presented as effects of coat color should be interpreted as including the possible effects of the breed or breed combinations that may potentially produce those colors.

Effect of Coat Color on Preconditioning ADG

P<0.001

Effect of Coat Color on Feedlot ADG

Effect of Coat Color on Feed Efficiency

P<0.01

Effect of Coat Color on Days on Feed

Effect of Coat Color on Cost of Gain

Effect of Coat Color on Hot Carcass Weight

Effect of Coat Color on Quality Grade

Effect of Coat Color on Ribeye Area/cwt

P<0.05

Effect of Coat Color on Yield Grade

P<0.05

Coat Color Summary

- Red cattle had lower Feedlot ADG and Poorer Feed Efficiency resulting in increased Cost of Gain
- Black cattle had smaller Hot Carcass Weight and REA/cwt, higher Yield Grade, but increased Quality Grade
- Grey cattle had larger HCW, REA/cwt, similar Quality Grade, and had lower Yield Grade than Blacks

Color Pattern

Color Pattern

- Color Pattern had no effect on...
 - Preconditioning ADG
 - Feedlot ADG
 - Feed Efficiency
 - Days on Feed
 - Cost of Gain
 - Hot Carcass Weight
 - Quality Grade
 - Ribeye Area/cwt
 - Yield Grade

Questions?

Color Pattern Summary

 These results indicate that price discrimination on the basis of color pattern is unwarranted, due to the lack of differences observed in performance between solid and non-solid patterned calves.

Implications-Preconditioning ADG

- Preconditioning ADG was not a good predictor of feedlot ADG.
- A strong improvement in feed efficiency was observed as preconditioning performance increased, resulting in a lower cost of gain and heavier carcass weights with fewer days on feed.

Implications-Brahman %

- A genotype by environment interaction existed with Brahman influenced calves having greater gains during preconditioning but lower feedlot ADG.
- As Brahman percentage increased, hot carcass weight and quality grade declined indicating that some discount on the basis of carcass performance is merited.

Implications-Condition Score

 Condition score is a good predictor of preconditioning ADG and overall feedlot performance supporting industry discrimination against fleshy calves.

Implications-Color

- Red cattle had poorer feedlot performance.
- Grey cattle perform similarly to black cattle for quality grade, but had the advantage of heavier carcasses and lower yield grades.
- Price discrimination on the basis of color pattern does not appear to be warranted in cattle that are managed similarly.

Effect of Condition Score on Ribeye Area/cwt

Introduction

- Preconditioning
 - Prepare the calf for a later stage of production
 - Reduce stress of weaning
 - Insure proper immunity
 - Reduce the incidence of BRD
 - Transition period
 - Nutritionally
 - Socially
 - Environmentally

Questions

Effect of Preconditioning ADG on Days on Feed

As Preconditioning ADG increased by 1 lb, Days on Feed decreased by 3.3d. (P<0.005)

Effect of Preconditioning ADG on Ribeye Area/100lb

As Preconditioning ADG increased by 1 kg, Ribeye Area/100lb decreased by 0.53 cm². (P<0.01)

Effect of Brahman Percentage on Yield Grade

Coat Color

Breed of Sire

- Angus
- Brangus
- Charolais
- Hereford
- Red Angus

Dam Type

- Angus
- Braford
- Brahman
- Brangus
- Charbray
- Charolais

Effect of Condition Score on Quality Grade

^{a, b} means within a category differ P<0.05.

Effect of Condition Score on Days on Feed

Effect of Brahman Percentage on Cost of Gain

Effect of Brahman Percentage on Feed Efficiency

Effect of Brahman Percentage on Days on Feed

Effect of Brahman Percentage on Feed Efficiency

^{a,b} means within a category differ P<0.05.

Effect of Preconditioning ADG on Yield Grade

Effect of Preconditioning ADG on Quality Grade

Materials and Methods

Materials and Methods

- At the feedlot calves were...
 - Individually weighed
 - Re-vaccinated
 - Implanted
 - Processed through ECM

 Calves were reprocessed every 60d until harvest and sorted on d 120,d 180, and d 240. Pens were closed out on d 300.

Materials and Methods

 The feedlot utilized the ACCU-TRAC Electronic Cattle Management (ECM) system to measure performance, predict optimal endpoint, and sort into outcome groups.

Materials and Methods

- Hair shedding characteristics were determined according to Thrift et al. (1994) and were classified as
 - Shed
 - Partial Shed
 - Non-Shed

Implications

- Although calves that have not shed their coat may by challenged in Florida, significant improvements in feedlot performance can be observed in temperate climates.
- Hair shedding characteristics do not appear to be predictive of carcass traits.

Hair Shedding Characteristics

Effect of Hair Shedding on Preconditioning ADG

Effect of Hair Shedding on Feedlot ADG

^{a, b} means within a category differ P<0.05.

Effect of Hair Shedding on Feed Efficiency

P<0.05

Effect of Hair Shedding on Days on Feed

Effect of Hair Shedding on Cost of Gain

P<0.05

Hair Shedding

 Hair Shedding had no effect on any of the carcass traits measured in this study

Hair Shedding Summary

- Non-Shed calves had
 - Better Feed Efficiency
 - Fewer Days on Feed
 - Lower Cost of Gain
- Hair Shedding Characteristics had no effect on
 - Hot Carcass Weight
 - Quality Grade
 - Ribeye Area/100kg
 - Yield Grade

List of References

- Cole, N. A. 1985. Preconditioning calves for the feedlot. Vet. Clin. North Am. Food Anim. Pract. 1:401.
- Loerch, S. C., F. L. Fluharty, and P. A. Tirabasso. 2001. Effect of source and color of cattle on performance of steers in the OARDC Feedlot. Special Circular 181-01. The Ohio State Univ., Columbus.
- Minert, J. R., F. K. Brazel, T. C. Schroeder, and O. Grunewald. 1988. Feeder c attle and cow price differentials at Kansas cattle auctions, Fall 1986 and Spring 1987. Kansas State Ag. Exp. Station report of progress #547. Kansas State Univ., Manhattan.
- SAS. 2003. SAS User's Guide: Statistics. SAS Inst. Inc., Cary, NC.
- Sherbeck, J. A., J. D. Tatum, T. G. Field, J. B. Morgan, and G. C. Smith. 1996. effect of phenotypic expression of Brahman breeding on marbling and tenderness traits. J. Anim. Sci. 74:304.
- Thrift, F. A., S. M. Keeney, and D. L. Applegate. 1994. Elevated body temperature differences expressed by stocker cattle processed through a Central Kentucky stockyard. Prof. Anim. Sci. 10:139.

Weaning Weight

Effect of Hair Shed on Hot Carcass Weight

P=0.74

Effect of Hair Shed on Quality Grade

Effect of Hair Shed on Ribeye Area/100kg

Effect of Hair Shed on Yield Grade

Effect of Weaning Weight on Preconditioning ADG

Weaning Weight

 Preconditioning ADG decreased by 0.45 kg/d as Weaning weight increased by 100 kg.

Effect of Weaning Weight on Feedlot ADG

Effect of Weaning Weight on Feed Efficiency

Effect of Weaning Weight on Days on Feed

Effect of Weaning Weight on Cost of Gain

Weaning Weight

- Weaning Weight had no effect on
 - Feedlot ADG
 - Cost of Gain
- There was an interaction between Weaning Weight and Sex for Feed Efficiency
- Days on Feed decreased by 23.7 kg as Weaning Weight increased by 100 kg.

Effect of Weaning Weight on Hot Carcass Weight

Effect of Weaning Weight on Quality Grade

Effect of Weaning Weight on Ribeye Area

Effect of Weaning Weight on Ribeye Area/100kg

Effect of Weaning Weight on Yield Grade

Weaning Weight

- Hot Carcass Weight increased by56.6 kg as Weaning Weight increased by 100 kg.
- Weaning Weight had no effect on Quality Grade
- Ribeye Area increased by 2.93 cm² as Weaning Weight increased by 100 kg.
- Ribeye Area/100kg decreased by 3.94 cm² as Weaning Weight increased by 100 kg.
- Yield Grade increased by 1/3 of a grade as Weaning Weight increased by 100 kg

Effect of Sex on Preconditioning ADG

• Sex had no effect on Preconditioning ADG

Effect of Sex on Feedlot ADG

Effect of Sex on Feed Efficiency

- Interaction between Sex and PCADG for FE
- Interaction between Sex and WW for FE

Effect of Sex on Days on Feed

Effect of Sex on Cost of Gain

Sex

- An interaction was discovered between Sex and Coat Shedding Characteristics for Feedlot ADG
- Interactions between Sex and PCADG and Sex and WW were discussed previously
- Heifers were fed for fewer DOF than Steers
- Styeers had lower Cost of Gain than Heifers

Effect of Sex on Hot Carcass Weight

Effect of Sex on Quality Grade

 Interaction between Sex and Condition Score presented earlier

Effect of Sex on Ribeye Area

 Interaction between sex and condition score for REA discussed earlier

Effect of Sex on Ribeye Area/100kg

Effect of Sex on Yield Grade

Sex

- Steers had 21 kg heavier carcasses than Heifers
- Interaction sex by Condition for AQG
- Interaction sex by condition for REA
- Steers had smaller Rea/100kg than Heifers
- Sex had no effect on YG

Color Pattern

Effect of Color Pattern on Preconditioning ADG

Color Pattern

 Color Pattern had no effect on Preconditioning ADG

Effect of Color Pattern on Feedlot ADG

Effect of Color Pattern on Feed Efficiency

Effect of Color Pattern on Days on Feed

Effect of Color Pattern on Cost of Gain

Color Pattern

• Color Pattern had no effect on any parameters measured in the feedlot phase.

Effect of Color Pattern on Hot Carcass Weight

Effect of Color Pattern on Quality Grade

Effect of Color Pattern on Ribeye Area

Effect of Color Pattern on Ribeye Area/100kg

Effect of Color Pattern on Yield Grade

Color Pattern

 Color Pattern had no effect on any parameters measured at the carcass level

Effect of Preconditioning ADG on Ribeye Area

Effect of Brahman Percentage on Ribeye Area

Effect of Condition Score on Ribeye Area

Effect of Condition Score on Ribeye Area

Effect of Coat Color on Ribeye Area

