## The Brahman Project

M. A. Elzo<sup>1</sup>, C. C. Chase<sup>2</sup>, Jr., D. D. Johnson<sup>1</sup>, D. O. Rae<sup>3</sup>, D. G. Riley<sup>4</sup>, R. D. Randel<sup>5</sup>, C. R. Long<sup>5</sup>, J. Block<sup>1</sup>, J. G. Wasdin<sup>1</sup>, J. D. Driver<sup>1</sup>, M. L. Rooks<sup>2</sup>, and G. E. Dahl<sup>1</sup>

<sup>1</sup>Department of Animal Sciences, UF/IFAS, Gainesville, FL <sup>2</sup>USDA-ARS Subtropical Agricultural Research Station, Brooksville, FL <sup>3</sup>Dept. Large Animal Clinical Sciences, College Vet. Medicine, UF, Gainesville, FL <sup>4</sup>Department of Animal Science, Texas A&M, College Station, TX <sup>5</sup>Texas AgriLife Research & Extension Center, Overton, TX



**Objectives** 

**Population Structure** 

**Data and Tissue Sampling** 

**Genetic and Genomic Evaluation** 

**Culling, Mating, and Selection** 

**Research and Expected Outcomes** 

### **Origin of the Brahman Project**

Series of meetings at STARS in Brooksville at the end of 2009 and beginning of 2010

First Meeting: November 2009 Florida Producers UF Faculty & Administrators USDA-ARS Scientists & Administrators

Three Other Meetings: December 2009 to May 2010 USDA-ARS Scientists and UF Faculty Texas A&M Faculty NMSU, LSU, and USDA-MARC Scientists

### First Meeting ...

Brahman cattle widely used for crossbreeding in the Southern Region of the US

Brahman has excellent adaptability to tropical conditions and good growth and feed efficiency Needed improvement in fertility and carcass and meat palatability

There was a need for a large scale research Brahman project involving producers and researchers Target Traits: Reproduction, Growth, Feed Efficiency, and Carcass and Meat Palatability

### The Other Three Meetings ...

#### **Technical Meetings**

**Objectives of the Brahman Project Structure of the Population Construction of the Brooksville Brahman Herd** Pedigree, Phenotypic, and Genotypic Data Collection **Tissue Sample Collection and Storage Database Storage and Management** Genetic and Genomic Evaluation Mating, Culling and Selection **Assessment of Genetic Change Research Areas and Expected Outcomes** 

### **Origin of the Brahman Project**

**Objectives** 

**Population Structure** 

**Data and Tissue Sampling** 

**Genetic and Genomic Evaluation** 

**Culling, Mating, and Selection** 

**Research and Expected Outcomes** 



Develop a Brahman population with animals from multiple herds to conduct genetics and genomics evaluation and selection for reproduction, growth, feed efficiency, ultrasound, carcass and meat palatability traits

Construct a database with pedigree, genomic, and phenotypic data from all participating herds

Conduct genetic and genomic evaluation of animals for reproduction, growth, feed efficiency, ultrasound, and carcass and meat palatability traits using pedigree, genomic, and phenotypic information

Identify and disseminate genetics from animals with the best predicted genetic and genomic values for reproduction, growth, feed efficiency, and carcass and meat palatability traits



**Objectives** 

**Population Structure** 

**Data and Tissue Sampling** 

**Genetic and Genomic Evaluation** 

Culling, Mating, and Selection

**Research and Expected Outcomes** 

## **Initial Population Structure**



### **Future Population Structure**



## Future Connectedness Among Herds



#### Sires Used in Brooksville for Embryo Transfer or In-Vitro Fertilization (2010 to 2013)

| Year | Sire Reg # | Sire Name                | Herd of Origin                         | State |
|------|------------|--------------------------|----------------------------------------|-------|
| 2010 | 794506     | REP SIR MANSO MANGUM 420 | DOC PARTIN RANCH                       |       |
| 2010 | 306428     | +BL LITTLE BOZO 1/8      | BERCHMAN LAVERGNE                      | LA    |
| 2010 | 800995     | JDH MR MANSO 236/3       | J.D. HUDGINS-FORGASON DIV.             | ТХ    |
| 2010 | 854694     | MR TAES 6087             | TEXAS A & M UNIVERSITY                 | ТХ    |
| 2010 | 863297     | MR TAES 7145             | TEXAS A & M UNIVERSITY                 | ТХ    |
| 2011 | 794506     | REP SIR MANSO MANGUM 420 | DOC PARTIN RANCH                       | 1     |
| 2011 | 804549     | KCC SUTTON DUBO 135      | KEMPFER CATTLE COMPANY                 | 71.   |
| 2011 | 832506     | KCC EMPEROR DUBO         | KEMPFER CATTLE COMPANY                 | 71.   |
| 2011 | 306428     | +BL LITTLE BOZO 1/8      | BERCHMAN LAVERGNE                      | LA    |
| 2011 | 877366     | SCD DIDOR ESTO 623       | D BAR RANCH                            | LA    |
| 2011 | 845544     | NMSU 6X CLOVERDALE 5129  | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2011 | 862754     | NMSU GARRETT MANSO 7057  | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2011 | 295806     | JDH MULHIM EMP MANSO     | J.D. HUDGINS-LOCKE DIV.                | ТХ    |
| 2011 | 800995     | JDH MR MANSO 236/3       | J.D. HUDGINS-FORGASON DIV.             | ТХ    |
| 2011 | 829894     | MR TAES 3040             | TEXAS A & M UNIVERSITY                 | ТХ    |
| 2011 | 851136     | MSP SPECIAL RELOAD 945   | PARTIN & PARTIN HEART BAR RANCH        | ТХ    |
| 2011 | 863297     | MR TAES 7145             | TEXAS A & M UNIVERSITY                 | ТХ    |
| 2013 | 783104     | REP IMPRA MANGUM 370     | UF MULTIBREED HERD                     | FL    |
| 2013 | 804549     | KCC SUTTON DUBO 135      | KEMPFER CATTLE COMPANY                 | FL    |
| 2013 | 816797     | REP WALTER MANSO         | UF MULTIBREED HERD                     | FL    |
| 2013 | 778115     | MR.SUNLAND 6X 874        | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2013 | 845544     | NMSU 6X CLOVERDALE 5129  | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2013 | 862754     | NMSU GARRETT MANSO 7057  | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2013 | 871628     | NMSU DUBO CHERRA 45/1    | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2013 | 586630     | EJL EMPER SUVILLE 176    | DAVID HUSFELD-SANTERLAND RANCH LTD. CO | ТХ    |
| 2013 | 809856     | MSP ESTO CHERRA 754      | PARTIN & PARTIN HEART BAR RANCH        | ТХ    |
| 2013 | 851136     | MSP SPECIAL RELOAD 945   | PARTIN & PARTIN HEART BAR RANCH        | ТХ    |

#### Natural Service Sires Used in Brooksville from 2009 to 2012

| Year | Sire Reg # | Sire Name             | Herd of Origin         | State |
|------|------------|-----------------------|------------------------|-------|
| 2009 | 857614     | BB MR WEST BERCH 508  | BARTHLE BROTHERS RANCH | н.    |
| 2009 | 842143     | STARS 03-048          | STARS                  | FL    |
| 2009 | 856461     | TH BURMA BEN 182-04   | TREASURE HAMMOCK RANCH | FL    |
| 2010 | 856461     | TH BURMA BEN 182-04   | TREASURE HAMMOCK RANCH | FL    |
| 2010 | 828050     | JCC DAK Charley 109/1 | DOUBLE C BAR RANCH     | FL    |
| 2011 | 894378     | STARS 09-212          | STARS                  | FL    |
| 2011 | 863297     | MR TAES 7145          | TEXAS A & M UNIVERSITY | тх    |
| 2012 | 864628     | KCC 272 OF 185-176    | KEMPFER CATTLE COMPANY | FL    |
| 2012 | 863297     | MR TAES 7145          | TEXAS A & M UNIVERSITY | тх    |
| 2012 | 890628     | MR. TAES 0107         | TEXAS A & M UNIVERSITY | тх    |

#### [AI, ET, IVF] Sire Usage by State, Year, and Herd from 2010 to 2013

| Years Used [AI,ET,IVF] | Sire Reg # | Name                     | Herd                                   | State |
|------------------------|------------|--------------------------|----------------------------------------|-------|
| 2010, 2011             | 794506     | REP SIR MANSO MANGUM 420 | DOC PARTIN RANCH                       | FL    |
| 2011, 2013             | 804549     | KCC SUTTON DUBO 135      | KEMPPER CATTLE COMPANY                 | FL.   |
| 2011                   | 794506     | REP SIR MANSO MANGUM 420 | DOC PARTIN RANCH                       | FL    |
| 2011                   | 832506     | KCC EMPEROR DUBO         | KEMPFER CATTLE COMPANY                 | FL    |
| 2013                   | 783104     | REP IMPRA MANGUM 370     | UF MULTIBREED HERD                     | FL    |
| 2013                   | 816797     | REP WALTER MANSO         | UF MULTIBREED HERD                     | FL    |
| 2010, 2011             | 306428     | +BL LITTLE BOZO 1/8      | BERCHMAN LAVERGNE                      | LA    |
| 2011                   | 877366     | SCD DIDOR ESTO 623       | D BAR RANCH                            | LA    |
| 2011, 2013             | 845544     | NMSU 6X CLOVERDALE 5129  | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2011, 2013             | 862754     | NMSU GARRETT MANSO 7057  | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2013                   | 778115     | MR.SUNLAND 6X 874        | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2013                   | 871628     | NMSU DUBO CHERRA 45/1    | NEW MEXICO STATE UNIVERSITY            | NM    |
| 2010, 2011             | 863297     | MR TAES 7145             | TEXAS A & M UNIVERSITY                 | ТХ    |
| 2010, 2011             | 800995     | JDH MR MANSO 236/3       | J.D. HUDGINS-FORGASON DIV.             | ТХ    |
| 2011, 2013             | 851136     | MSP SPECIAL RELOAD 945   | PARTIN & PARTIN HEART BAR RANCH        | ТХ    |
| 2011                   | 295806     | JDH MULHIM EMP MANSO     | J.D. HUDGINS-LOCKE DIV.                | ТХ    |
| 2011                   | 829894     | MR TAES 3040             | TEXAS A & M UNIVERSITY                 | ТХ    |
| 2010                   | 854694     | MR TAES 6087             | TEXAS A & M UNIVERSITY                 | ТХ    |
| 2013                   | 586630     | EJL EMPER SUVILLE 176    | DAVID HUSFELD-SANTERLAND RANCH LTD. CO | ТХ    |
| 2013                   | 809856     | MSP ESTO CHERRA 754      | PARTIN & PARTIN HEART BAR RANCH        | ТХ    |

#### [NS] Sire Usage by State, Year, and Herdfrom 2009 to 2012

| Years Used [NS] | Sire Reg # | Name                  | Herd                   | State |
|-----------------|------------|-----------------------|------------------------|-------|
| 2009, 2010      | 856461     | TH BURMA BEN 182-04   | TREASURE HAMMOCK RANCH | PL.   |
| 2009            | 857614     | BB MR WEST BERCH 508  | BARTHLE BROTHERS RANCH | FL    |
| 2009            | 842143     | STARS 03-048          | STARS                  | FL    |
| 2010            | 828050     | JCC DAK Charley 109/1 | DOUBLE C BAR RANCH     | FL    |
| 2011            | 894378     | STARS 09-212          | STARS                  | FL    |
| 2012            | 864628     | KCC 272 OF 185-176    | KEMPFER CATTLE COMPANY | FL    |
| 2011, 2012      | 863297     | MR TAES 7145          | TEXAS A & M UNIVERSITY | тх    |
| 2012            | 890628     | MR. TAES 0107         | TEXAS A & M UNIVERSITY | ТХ    |

#### Numbers of Brahman Females by Herd of Origin and Age

| Herd of origin     | Repro<br>System | Cows | 2-Year Olds | Yearlings | Calves | Total |
|--------------------|-----------------|------|-------------|-----------|--------|-------|
| Brooksville        | NS              | 65   | 11          | 7         | 27     | 110   |
| Texas AgriLife     | NS              | 10   |             |           |        | 10    |
|                    |                 |      |             |           |        |       |
| Barthle Bros Ranch | ET              |      |             |           | 4      | 4     |
| Brooksville        | ЕТ              |      |             | 8         | 4      | 12    |
| Doc Partin Ranch   | ET              |      |             | 9         | 7      | 16    |
| Kempfer Ranch      | ЕТ              |      |             | 2         |        | 2     |
| Texas AgriLife     | ЕТ              |      |             |           | 12     | 12    |
|                    |                 |      |             |           |        |       |
| Total              |                 | 75   | 11          | 26        | 54     | 166   |

## Number of Donor Brahman Cows Producing Heifers by Herd of Origin

#### and Year of Mating<sup>1</sup>

| Herd of origin     | 2010 | 2011    |
|--------------------|------|---------|
| Barthle Bros Ranch |      | 3 (4)   |
| Brooksville        | 3    | 2 (5)   |
| Doc Partin Ranch   | 3    | 3 (4)   |
| Kempfer Ranch      | 1    |         |
| Texas AgriLife     |      | 8 (9)   |
| Gray Shadow Ranch  |      | 0 (3)   |
|                    |      |         |
| Total              | 7    | 16 (25) |

<sup>1</sup>Total number of donor cows in parenthesis.

#### **Natural Service Matings for 2012**

|                    | MR TAES 7145 | MR TAES 0107 | KCC 272 OF 185-176 | Total |
|--------------------|--------------|--------------|--------------------|-------|
| Heifers (Yearling) | 0            | 26           | 0                  | 26    |
| Cows               | 38           | 12           | 36                 | 86    |
| Total              | 38           | 38           | 36                 | 112   |

## **Connectedness Brooksville Herd** and Cooperating Herds (2009-2013)



















**Origin of the Brahman Project** 

**Objectives** 

**Population Structure** 

**Data and Tissue Sampling** 

**Genetic and Genomic Evaluation** 

Culling, Mating, and Selection

**Research and Expected Outcomes** 

### **Data Collection and Storage 1**

Pedigree Data Complete pedigree file with information on all animals (calves, sires, and dams) from all experimental and private herds in the population

#### Phenotypic Data 1

Reproduction: age at puberty, calving interval Growth: calf weights at birth, pre-weaning, weaning, yearling, post-yearling; cow weights, condition scores

### **Data Collection and Storage 2**

#### Phenotypic Data 2

Feed Efficiency: postweaning weights, feed intake, water intake, residual feed intake, feed conversion ratio Temperament: pen score, exit velocity Ultrasound: ribeye area, intramuscular fat, backfat

#### **Phenotypic Data 3**

Carcass: carcass weight, dressing percent, ribeye area, marbling, backfat thickness Meat Palatability: shear force, tenderness, connective tissue, juiciness, flavor, off-flavor

### Where and What Data?

Brooksville Brahman Herd Multibreed Angus-Brahman Herd Contributing Experiment Stations (TX, LA) Private Herds

All Herds: phenotypes that are part of herd management (e.g., calving dates, calf and cow weights)

Some Herds (Funding Permitting): feed efficiency, carcass, and meat palatability traits

**Realistic Objective Collect as much data as feasible at each location** 

## **UF Feed Efficiency Facility**

NFREC GrowSafe FE Facility, Marianna, FL AdjPeriod: 21 d; Trial: 70 d Pens: 24; Calves/pen: 14 - 16

Intake: Feed, Water (Real time) Growth: Dates, weights, Hip Ht (2 wk) Temperament: Chute Score, Exit Vel (2 wk) Ultrasound: UREA, UIMF, UBF













### **Tissue Collection and Storage**

#### Sires Semen (4 straws) or Blood (10cc)

Dams and Calves Blood (10cc)

DNA from tissue samples would be maintained in a repository for long-term storage and retrieval UF Interdisciplinary Center for Biotechnology (ICBR) Other suitable site

## Genomic Analysis of Tissue Samples

Provided that funding is available

DNA samples will be analyzed using available commercial genotyping chips Illumina 50K, HD (770K), and LD (7K) GeneSeek UF ICBR

Genotypic data would be added to the pedigree and phenotypic data to conduct genetic and genomic evaluation of animals in the Brahman population

## Illumina BovineSNP50 v2 BeadChip

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of Marke |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samples per     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BeadChip        |
| and the second division of the second divisio |                 |
| and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| and the second sec                                                                                                                                                                                                                                             | DNA Requiremen  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| A Designed and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Assay           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Instrument      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |

| Number of Markers       | 54,609            |
|-------------------------|-------------------|
| Samples per<br>BeadChip | 24                |
| DNA Requirement         | 200ng             |
| Assay                   | GoldgenGate       |
| Instrument              | iScan or HiScanSQ |

http://www.illumina.com/products/bovine\_snp50\_whole-genome\_genotyping\_kits.ilmn

## Illumina BovineSNPHD BeadChip

|                                                                                        | Number of Markers       | 777,962           |
|----------------------------------------------------------------------------------------|-------------------------|-------------------|
|                                                                                        | Samples per<br>BeadChip | 8                 |
|                                                                                        | DNA Requirement         | 200ng             |
|                                                                                        | Assay                   | Infinium HD       |
| Ellurinitis<br>Ellurinitis<br>Ellurinitis<br>Ellurinitis<br>Ellurinitis<br>Ellurinitis | Instrument              | iScan or HiScanSQ |

http://www.illumina.com/products/bovinehd\_whole-genome\_genotyping\_kits.ilmn

## Illumina BovineLD BeadChip



| Number of Markers       | 6,909                                      |
|-------------------------|--------------------------------------------|
| Samples per<br>BeadChip | 24                                         |
| DNA Requirement         | 200ng at 50 ng/ul                          |
| Assay                   | Infinium HD Ultra                          |
| Instrument              | iScan, HiScanSQ,<br>or BeadArray<br>Reader |

http://www.illumina.com/documents/products/product\_information\_sheets/product\_info\_bovineLD.pdf

### **Data Storage and Processing**

Flexible Database Structure Initially: Spreadsheet files (Excel) Subsequently: Database program and dedicated computer programs for editing, storage, and retrieval

#### Later on ...

Homepage: Producer could enter and manage data from individual herds Computer Technician: Needed for programming, database entry and maintenance, and data analysis

### Calf File 2012: ET Birth Data



(+)

Ready

### Calf File 2012: NS Birth Data



🔳 🗆 🛄 145% 😑

Ready

## Cow File 2012: NS Mating Data



(+)

Ready

**Origin of the Brahman Project** 

**Objectives** 

**Population Structure** 

**Data and Tissue Sampling** 

**Genetic and Genomic Evaluation** 

Culling, Mating, and Selection

**Research and Expected Outcomes** 

### **Genetic and Genomic Evaluation**

#### Data Pedigree, Phenotypes, Genotypes

#### Models

Genomic-Polygenic: Pedigree, Phenotypes, and Genotypes Polygenic: Pedigree and Phenotypes Genomic: Phenotypes and Genotypes

## Genomic-Polygenic Model Multibreed

#### RFI, FCR, DFI, PWG

-

year-reprogroup-pen + age of dam + sex of calf + age calf + breed fraction calf + heterozygosity calf + additive animal polygenic + additive SNP genomic + residual Genomic Model Multibreed

#### RFI, FCR, DFI, PWG

### year-reprogroup-pen + age of dam + sex of calf + age calf

+ breed fraction calf + heterozygosity calf

+ additive SNP genomic + residual

## Polygenic Model Multibreed

#### RFI, FCR, DFI, PWG

year-reprogroup-pen + age of dam + sex of calf + age calf + breed fraction calf + heterozygosity calf + additive animal polygenic

+ residual

## Genomic-Polygenic Predictions Multibreed





## Genomic Predictions Multibreed





## Polygenic Predictions Multibreed







# Number of calves by breed group of sire x breed group of dam combination

| Breed           | Breed group of sire |                       |         |         |         |         |     |
|-----------------|---------------------|-----------------------|---------|---------|---------|---------|-----|
| group of<br>dam | Angus               | <sup>3</sup> ⁄4 A ¼ B | Brangus | ½ A ½ B | ¼ A ¾ B | Brahman | All |
| Angus           | 46                  | 10                    | 18      | 7       | 7       | 17      | 105 |
| ¾ A ¼ B         | 24                  | 21                    | 31      | 26      | 14      | 16      | 132 |
| Brangus         | 4                   | 10                    | 60      | 9       | 10      | 7       | 100 |
| ½ A ½ B         | 30                  | 27                    | 21      | 26      | 22      | 20      | 146 |
| ¼ A ¾ B         | 13                  | 17                    | 11      | 9       | 11      | 4       | 65  |
| Brahman         | 1                   | 2                     | 1       | 0       | 0       | 68      | 72  |
| All             | 118                 | 87                    | 142     | 77      | 64      | 132     | 620 |

### Additive Genetic and Genomic Variation for RFI, DFI, FCR and PWG

| Trait     | Parameter | AGVar | PhenVar | Heritability | AGOVar/AGVar |
|-----------|-----------|-------|---------|--------------|--------------|
| RFI       | Mean      | 0.37  | 1.79    | 0.21         | 0.14         |
| (kg/d)    | SD        | 0.15  | 0.11    | 0.08         | 0.11         |
| DFI       | Mean      | 0.80  | 2.42    | 0.33         | 0.10         |
| (kg/d)    | SD        | 0.24  | 0.15    | 0.09         | 0.08         |
| FCR       | Mean      | 1.32  | 6.50    | 0.20         | 0.26         |
| (kfd/kgd) | SD        | 0.56  | 0.40    | 0.08         | 0.17         |
| PWG       | Mean      | 89.74 | 240.97  | 0.37         | 0.16         |
| (kg)      | SD        | 25.85 | 15.09   | 0.10         | 0.11         |

### **Genomic-Polygenic EBV for RFI**



### **Genomic EBV for RFI**



### **Polygenic EBV for RFI**



### Rank correlations of animals evaluated for RFI, DFI, FCR, and PWG using genomic-polygenic, genomic, and polygenic models

|                   | Trait |      |      |      |  |
|-------------------|-------|------|------|------|--|
| Correlation       | RFI   | DFI  | FCR  | PWG  |  |
| GP Model, G Model | 0.65  | 0.62 | 0.66 | 0.74 |  |
| GP Model, P Model | 0.98  | 0.99 | 0.95 | 0.99 |  |
| G Model, P Model  | 0.52  | 0.51 | 0.42 | 0.65 |  |

### Predicted SNP Values for RFI Ordered by Location Across Chromosomes



### Predicted SNP Values for RFI Ordered by Chromosome



**Origin of the Brahman Project** 

**Objectives** 

**Population Structure** 

**Data and Tissue Sampling** 

**Genetic and Genomic Evaluation** 

**Culling, Mating, and Selection** 

**Research and Expected Outcomes** 

### Culling, Mating, and Selection

#### Culling

Females culled due to health, reproduction, and production issues as in any commercial operation

Heifers: cull if not pregnant at 2 or 3 years of age (2 opportunities only) Cows: cull if not pregnant or wean a calf in 2 consecutive years

#### Mating

Artificial Insemination: Synchronized, then Al once or twice Embryo Transfer and In-Vitro Fertilization: Part of the Al system; Donor cows (3 or more consecutive calvings and good weaning weights) Natural Service: After Al (ET, IVF) Brahman cows placed in groups of 35 to 50 with a Brahman cleanup bull for 60 days; Recipient cows placed with crossbred Angus-Brahman sires for 60 days

### **Future: Selection Indexes**

#### Index 1

Primarily: Reproduction (fertility, age at puberty), Growth Secondarily: Carcass (marbling) and Meat Palatability (tenderness)

#### Index 2

**Primarily:** Carcass and Meat Palatability, Growth **Secondarily:** Reproduction (fertility, age at puberty)

Selection based on these indexes will effectively create 2 Selection Lines Specification of indexes will require input from cooperators

### 2012 Brooksville Brahman Herd: Culling and Mating

#### Culling

Minimum culling of females due to health, reproduction, and production issues

#### Mating

Artificial Insemination: None (only ET Donor cows Synchr & Al) Embryo Transfer and In-Vitro Fertilization: None Natural Service: Brahman cows placed in groups of 35 to 50 with a Brahman sire for 60 days; Recipient cows placed with crossbred Angus-Brahman sires for 60 days **Origin of the Brahman Project** 

**Objectives** 

**Population Structure** 

**Data and Tissue Sampling** 

**Genetic and Genomic Evaluation** 

Culling, Mating, and Selection

**Research and Expected Outcomes** 



Prediction models and procedures for genetic and genomic values and estimation of genetic and genomic parameters for reproduction, growth, feed efficiency, ultrasound, and carcass and meat palatability traits

Comparison of individual animals and groups of animals produced by AI, NS, ET, and IVF using phenotypic, genetic and genomic values

Comparison of individual animals and groups of animals from different geographical origin using phenotypic, genetic and genomic values



Identification of groups of genes associated with reproduction, growth, feed efficiency, ultrasound, and carcass and meat palatability traits in Brahman and Brahman crossbred cattle

Identification of groups of genes affecting reproduction, growth, feed efficiency, ultrasound, and carcass and meat palatability traits in Brahman and Brahman crossbred cattle

Construction of single-breed and multibreed genomic models based on sets of genes associated with or affecting above mentioned traits



Genetic and genomic evaluation of animals from all cooperating herds in the population for traits in common

Within-herd and across-herd ranking of animals by their genetic and genomic predicted values

Improvement of traits within herds and in the complete Brahman population by preferential use of males and females with superior EBV as parents of subsequent generations

Determination of genetic and genomic trends for males and females for traits in common and comparisons of Brahman cattle grouped by various criteria (e.g., location, selection lines)

### **Acknowledgements**

Barthle Brothers Ranch, FL Doc Partin Ranch, FL D Bar Ranch, LA Double C Bar Ranch, FL Gray Shadow Ranch, FL Kempfer Cattle Company, FL J. D. Hudgins, Inc., TX **New Mexico State University, NM** Partin & Partin Heart Bar Ranch, TX **Rocking S Ranch, FL** Texas AgriLife Research & Extension Center, Overton, TX **Treasure Hammock Ranch, FL** 

> American Brahman Breeders Association Florida Brahman Association