

Tracy Scheffler

UF Department of Animal Sciences

Brahman

On the pasture

- Heat tolerant
- Parasite resistance
- Lower maintenance requirements

On the plate

- Variation in tenderness
- Lower marbling

Brahman

Key questions:

- What features and adaptations make Brahman heat tolerant?
 - Brahman are resilient

- Is heat tolerance related to meat quality?
 - Meat a product of life and death

Brahman

Heat exchange between the animal and the environment Animal surface area: weight Temperature gradient, animal vs. air Radiant energy **Evaporation - sweat** Hair coat sun **Convection - air Evaporation - water** from skin & breath **Conduction - ground**

Organ contribution to body metabolism

% of body weight

- Metabolic activity based on total weight
- Metabolic activity on per unit basis

Heat production (metabolic rate) in Brahman

Protein synthesis

lon gradients

Muscle tone

other

What affects energy requirements?

Energy for maintenance

Protein synthesis

lon gradients

Muscle tone

other

"Uncoupling" processes increase energy demand & metabolic rate

- Protein degradation
- lon leaks
- Muscle relaxation

Protein metabolism

Protein turnover

Protein Synthesis

ProteinDegradation

= Protein Deposition

Decrease protein degradation

Limit metabolic rate Limit heat production

- Heat tolerance?
- Growth rate?
- Meat quality?

Protein degradation contributes to tenderness during meat aging

Evaluating postmortem protein degradation

- Calpain (cuts proteins)
- Calpastatin (inhibitor)
- Calpain : calpastatin
- Breakdown of individual proteins

Increasing Brahman composition

On average, decreases protein degradation and tenderness

- Decreased protein degradation in living animal?
- Hypothesis:

Slower growing Brahman will have reduced protein synthesis and degradation, resulting in decreased growth rate, low metabolic rate, and greater heat tolerance

...and tougher beef

Heat tolerance, growth, & tenderness in Brahman

Heat challenge

Temperature - rooms

Rectal temperature

Respiration rate (breaths/min)

Meat quality

(n = 16 total)

Quality Grade

Tenderness

Avg shear force = 3.1 kg (2.1 - 3.7 kg)

Sensory rating

Brahman & tenderness

- Marbling ?
 Not improving sensory tenderness
- Protein degradation?
 Improves likelihood for favorable tenderness

Postmortem protein degradation in Brahman

- Calpain activation
 - Slower in Brahman
 - Slower activation ↑ toughness

What affects calpain activation?

Calpastatin (inhibitor)

- Slower disappearance in tougher steaks
- Degraded by calpain
- **Greater content?**
- **Capacity for inhibition?**
- Calcium
- **Temperature**

Postmortem metabolism

Calpastatin

Postmortem metabolism: Conversion of muscle to meat

	Living muscle	
рН	7.2	
Temp.	101°F	
Energy	Stable / recoverable	
Intracellular	Calcium tightly controlled	

Postmortem metabolism in Brahman

Improved maintenance of energy status (ATP)

Even in death, Brahman are resilient

A role for mitochondria?

- ATP production
- Calcium sequestration
- Mito-mediated cell death

Mitochondria-mediated (programmed) cell death

- Angus, Brangus, Brahman
- Caspases?

Caspase is not cleaved (activated)

Little support for a role for caspase postmortem!

Mitochondria function postmortem

- Does muscle from Angus & Brahman function differently early postmortem?
- Does temperature change functional properties?

- At 1h, mitochondria can work and are coupled (produce ATP)
- Brahman decrease oxygen consumption at higher temperature

Other ways to decrease heat production?

Limit mitochondrial leak

Brahman vs. Angus Mitochondrial function

Longissimus - 1h postmortem

Muscle Na/K ATPase and metabolic rate

- Increasing fiber size is metabolically advantageous (Jimenez et al., 2013)
- Decreasing surface area:volume reduces metabolic cost of maintaining membrane potential

Conclusions

- Cellular energy metabolism is an important contributor to heat production
- Several possible adaptations that may help reduce heat production in Brahman
- Muscle function in life may be antagonistic to meat quality parameters. Evaluate and balance consequences for pasture vs. plate.

Thank you!

Funding: Florida Cattle Enhancement Board NIFA-USDA Product Quality

Heat loss in Brahman

Smooth, slic