GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
INPUT DATA FILE |
Obs | animal | sire | dam | afa | afb | sfa | sfb | dfa | dfb | mgsfa | mgsfb | mgdfa | mgdfb | sex | bw | ww | snp01 | snp02 | snp03 | snp04 | snp05 | snp06 | snp07 | snp08 | snp09 | snp10 | snp11 | snp12 | snp13 | snp14 | snp15 | snp16 | snp17 | snp18 | snp19 | snp20 | snp21 | snp22 | snp23 | snp24 | snp25 | snp26 | snp27 | snp28 | snp29 | snp30 | snp31 | snp32 | snp33 | snp34 | snp35 | snp36 | snp37 | snp38 | snp39 | snp40 | snp41 | snp42 | snp43 | snp44 | snp45 | snp46 | snp47 | snp48 | snp49 | snp50 | snp51 | snp52 | snp53 | snp54 | snp55 | snp56 | snp57 | snp58 | snp59 | snp60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1.00 | 0.00 | 1 | 0 | 1.0 | 0.0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
2 | 2 | 0 | 0 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
3 | 3 | 0 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
4 | 4 | 1 | 0 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
5 | 5 | 1 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
Model_1_GEV_02_1T_Polygenic_October-30-2014_a November 1, 2014 |
GENETIC AND GENOMIC EVALUATION NOTES |
CHAPTER GEV_02 ALL MODELS |
MULTIPLE TRAIT GENETIC AND GENOMIC MODELS WITH: |
1) UNEQUAL RESIDUAL, ADDITIVE GENETIC, AND NONADDITIVE GENETIC COVARIANCE MATRICES ACROSS BREED GROUPS |
2) EQUAL RESIDUAL COVARIANCE MATRIX, UNEQUAL ADDITIVE AND NONADDITIVE GENETIC COVARIANCE MATRICES |
3) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, UNEQUAL NONADDITIVE GENETIC COVARIANCE MATRICES |
4) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, NO RANDOM NONADDITIVE GENETIC EFFECTS |
Mauricio A. Elzo, University of Florida, maelzo@ufl.edu |
Read input dataset (SAS file) |
datmat = matrix of input data |
datmat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | COL19 | COL20 | COL21 | COL22 | COL23 | COL24 | COL25 | COL26 | COL27 | COL28 | COL29 | COL30 | COL31 | COL32 | COL33 | COL34 | COL35 | COL36 | COL37 | COL38 | COL39 | COL40 | COL41 | COL42 | COL43 | COL44 | COL45 | COL46 | COL47 | COL48 | COL49 | COL50 | COL51 | COL52 | COL53 | COL54 | COL55 | COL56 | COL57 | COL58 | COL59 | COL60 | COL61 | COL62 | COL63 | COL64 | COL65 | COL66 | COL67 | COL68 | COL69 | COL70 | COL71 | COL72 | COL73 | COL74 | COL75 | COL76 | |
ROW1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
ROW2 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
ROW3 | 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
ROW4 | 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
ROW5 | 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
ROW6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
Read allele frequencies input dataset (SAS file) |
ntsnp |
---|
60 |
snpfreq | |
---|---|
1 | 0.1509 |
2 | 0.4252 |
3 | 0.1842 |
4 | 0.5314 |
5 | 0.6242 |
6 | 0.4292 |
7 | 0.2036 |
8 | 0.3518 |
9 | 0.5454 |
10 | 0.1048 |
11 | 0.3338 |
12 | 0.3284 |
13 | 0.006 |
14 | 0.502 |
15 | 0.2263 |
16 | 0.4706 |
17 | 0.0808 |
18 | 0.7216 |
19 | 0.026 |
20 | 0.3271 |
21 | 0.8718 |
22 | 0.0948 |
23 | 0.3825 |
24 | 0.0561 |
25 | 0.5401 |
26 | 0.6809 |
27 | 0.785 |
28 | 0.3758 |
29 | 0.0067 |
30 | 0.7891 |
31 | 0.0581 |
32 | 0.1429 |
33 | 0.6041 |
34 | 0.7196 |
35 | 0.9386 |
36 | 0.6335 |
37 | 0.4312 |
38 | 0.0033 |
39 | 0.2717 |
40 | 0.2203 |
41 | 0.5794 |
42 | 0.2023 |
43 | 0.5134 |
44 | 0.755 |
45 | 0.5648 |
46 | 0.518 |
47 | 0.3458 |
48 | 0.4806 |
49 | 0.3258 |
50 | 0.3117 |
51 | 0.7503 |
52 | 0.4132 |
53 | 0.743 |
54 | 0.6061 |
55 | 0.9933 |
56 | 0.7377 |
57 | 0.9399 |
58 | 0.4419 |
59 | 0.1295 |
60 | 0.0928 |
Enter Parameters for Current Run |
Enter restronsol = 1 to impose restrictions on solutions to solve the MME, else = 0 if not |
restronsol |
---|
0 |
No restrictions imposed on solutions to solve MME |
Enter nt = Number of traits |
nt |
---|
1 |
Enter nrec = Number of records |
nrec |
---|
6 |
Enter nfixpol = Number of fixed environmental and polygenic genetic effects |
nfixpol |
---|
6 |
Enter nanim = Number of animals |
nanim |
---|
6 |
Enter nsnp = number of marker locus genomic effects in the model |
nsnp |
---|
0 |
Enter 1 if random marker genomic effects in the model, else enter zero |
ranma |
---|
0 |
Enter 1 if random additive polygenic genetic effects in the model, else enter zero |
addpol |
---|
1 |
Enter 1 if random nonadditive polygenic genetic effects in the model, else enter zero |
nadpol |
---|
0 |
Enter 1 if zma values are [0,1,2] and 2 if zma values are [VanRaden(2009)] |
zmaval |
---|
1 |
Compute nf = Number of equations for fixed effects in the MME |
nf |
---|
6 |
Compute nma = Number of equations for marker locus additive genetic effects in the MME |
nma |
---|
0 |
Compute nga = Number of equations for random polygenic additive genetic effects in the MME |
nga |
---|
6 |
Compute ngn = Number of equations for random polygenic nonadditive genetic effects in the MME |
ngn |
---|
0 |
Compute neq = nf+nma+nga+ngn = total number of equations in the MME |
neq |
---|
12 |
Define pedigf = pedigree file with breed composition of animals, sires, and dams |
pedigf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
Construct xf = matrix of fixed and random effects |
Construct fixed effects in matrix xf |
Construct random polygenic additive genetic effects in matrix xf |
xf | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Make x = xf, i.e., use computed xf |
x | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Enter intrabreed and interbreed environmental variances |
veaa | vebb | veab |
---|---|---|
49 | 16 | 25 |
Compute vef = block-diagonal matrix of multibreed residual covariance matrices for individual animals |
pedigf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
vef | |||||
---|---|---|---|---|---|
49 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 32.5 | 0 | 0 | 0 |
0 | 0 | 0 | 32.5 | 0 | 0 |
0 | 0 | 0 | 0 | 32.5 | 0 |
0 | 0 | 0 | 0 | 0 | 47 |
Make r = vef |
r = block-diagonal matrix of residual covariance matrices for individual animals |
r | |||||
---|---|---|---|---|---|
49 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 32.5 | 0 | 0 | 0 |
0 | 0 | 0 | 32.5 | 0 | 0 |
0 | 0 | 0 | 0 | 32.5 | 0 |
0 | 0 | 0 | 0 | 0 | 47 |
invr = inverse of block-diagonal matrix of residual covariance matrices for individual animals |
invr | |||||
---|---|---|---|---|---|
0.0204082 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0625 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0307692 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0307692 | 0 | 0 |
0 | 0 | 0 | 0 | 0.0307692 | 0 |
0 | 0 | 0 | 0 | 0 | 0.0212766 |
Read yf = vector of records |
yf |
---|
289 |
245 |
256 |
261 |
292 |
286 |
Make y = yf, i.e., use read yf |
y |
---|
289 |
245 |
256 |
261 |
292 |
286 |
Compute xtinvr = x transpose times r |
xtinvr | |||||
---|---|---|---|---|---|
0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
0.0204082 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0625 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0307692 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0307692 | 0 | 0 |
0 | 0 | 0 | 0 | 0.0307692 | 0 |
0 | 0 | 0 | 0 | 0 | 0.0212766 |
Compute xtinvrx = x transpose times r times x |
xtinvrx | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0204082 | 0 | 0 | 0 | 0 | 0 |
0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0.0307692 | 0 | 0 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0 | 0.0307692 | 0 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0.0307692 | 0 |
0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 |
Enter intrabreed and interbreed additive genetic covariance matrices |
vaaa | vabb | vaab |
---|---|---|
36 | 44 | 22 |
Compute vaf = multibreed additive genetic covariance matrices for individual animals |
vaf | |||||
---|---|---|---|---|---|
36 | 0 | 0 | 0 | 0 | 0 |
0 | 44 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 43.5 |
Compute daf = block-diagonal matrix of residual additive genetic covariance matrices |
Recall: (Ga)-1 = (I - 1/2 P') (Block-diagonal Da)-1 (I - 1/2 P) for [dai]-1 blocks |
daf | |||||
---|---|---|---|---|---|
36 | 0 | 0 | 0 | 0 | 0 |
0 | 44 | 0 | 0 | 0 | 0 |
0 | 0 | 29 | 0 | 0 | 0 |
0 | 0 | 0 | 31 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 0 |
0 | 0 | 0 | 0 | 0 | 24.5 |
Make da = daf, i.e., use computed da |
Compute dainv = inverse of da |
dainv = inverse of block-diagonal matrix of residual additive genetic covariance matrices |
dainv | |||||
---|---|---|---|---|---|
0.0277778 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0227273 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0344828 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0322581 | 0 | 0 |
0 | 0 | 0 | 0 | 0.05 | 0 |
0 | 0 | 0 | 0 | 0 | 0.0408163 |
Compute gainv = inverse of the matrix of multibreed additive genetic covariances |
Using algorithm to compute gainv directly; Elzo (1990a),JAS 68:1215-1228 |
gainv | |||||
---|---|---|---|---|---|
0.0585464 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
0.0125 | 0.043848 | -0.017241 | 0 | -0.025 | 0 |
0.0102041 | -0.017241 | 0.0446868 | 0 | 0 | -0.020408 |
-0.016129 | 0 | 0 | 0.0322581 | 0 | 0 |
-0.025 | -0.025 | 0 | 0 | 0.05 | 0 |
-0.020408 | 0 | -0.020408 | 0 | 0 | 0.0408163 |
gainv | |||||
---|---|---|---|---|---|
0.059 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
0.013 | 0.044 | -0.017 | 0.000 | -0.025 | 0.000 |
0.010 | -0.017 | 0.045 | 0.000 | 0.000 | -0.020 |
-0.016 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 |
-0.025 | -0.025 | 0.000 | 0.000 | 0.050 | 0.000 |
-0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.041 |
Compute lhs = left hand side of the MME |
Add gainv to lhs |
lhs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0789545 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0.0125 | 0.106348 | -0.017241 | 0 | -0.025 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0102041 | -0.017241 | 0.0754561 | 0 | 0 | -0.020408 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | -0.016129 | 0 | 0 | 0.0630273 | 0 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | -0.025 | -0.025 | 0 | 0 | 0.0807692 | 0 |
0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | -0.020408 | 0 | -0.020408 | 0 | 0 | 0.0620929 |
lhs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 |
0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 |
0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
0.072 | 0.052 | 0.021 | 0.041 | 0.072 | 0.000 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 |
0.124 | 0.031 | 0.093 | 0.062 | 0.000 | 0.124 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 |
0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.079 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
0.063 | 0.000 | 0.063 | 0.000 | 0.000 | 0.063 | 0.013 | 0.106 | -0.017 | 0.000 | -0.025 | 0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.010 | -0.017 | 0.075 | 0.000 | 0.000 | -0.020 |
0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | -0.016 | 0.000 | 0.000 | 0.063 | 0.000 | 0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | -0.025 | -0.025 | 0.000 | 0.000 | 0.081 | 0.000 |
0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.062 |
Compute rhs = right hand side of the MME |
rhs |
---|
52.187873 |
22.907943 |
29.27993 |
27.934861 |
20.967681 |
31.220192 |
5.8979592 |
15.3125 |
7.8769231 |
8.0307692 |
8.9846154 |
6.0851064 |
rhs |
---|
52.19 |
22.91 |
29.28 |
27.93 |
20.97 |
31.22 |
5.90 |
15.31 |
7.88 |
8.03 |
8.98 |
6.09 |
Compute ginvlhs = generalized inverse of the left hand side of the MME |
ginvlhs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
8.359137 | 5.266819 | 3.092319 | -10.29009 | 5.198355 | 3.160782 | -8.580348 | -10.61224 | -5.982225 | -4.836566 | -8.777503 | -9.287324 |
5.266819 | 59.428486 | -54.16167 | -17.25187 | -18.72793 | 23.994751 | -15.43112 | 18.900097 | -1.938709 | -11.09751 | 11.770712 | -8.773656 |
3.092319 | -54.16167 | 57.253986 | 6.961776 | 23.926288 | -20.83397 | 6.850768 | -29.51234 | -4.043516 | 6.260947 | -20.54822 | -0.513667 |
-10.29009 | -17.25187 | 6.961776 | 38.276122 | -0.381300 | -9.908793 | 4.368033 | 5.237111 | -4.418830 | -5.195549 | -5.583049 | 0.919372 |
5.198355 | -18.72793 | 23.926288 | -0.381300 | 22.168260 | -16.96990 | -7.763188 | -10.15474 | 0.179990 | 2.677355 | -16.81631 | -9.041105 |
3.160782 | 23.994751 | -20.83397 | -9.908793 | -16.96990 | 20.130687 | -0.817160 | -0.457500 | -6.162215 | -7.513920 | 8.038805 | -0.246218 |
-8.580348 | -15.43112 | 6.850768 | 4.368033 | -7.763188 | -0.817160 | 33.340935 | 2.546740 | 5.557420 | 13.081879 | 17.304538 | 21.015460 |
-10.61224 | 18.900097 | -29.51234 | 5.237111 | -10.15474 | -0.457500 | 2.546740 | 40.582074 | 16.187956 | 6.089538 | 21.286913 | 10.047209 |
-5.982225 | -1.938709 | -4.043516 | -4.418830 | 0.179990 | -6.162215 | 5.557420 | 16.187956 | 28.140357 | 10.968408 | 11.763922 | 14.665364 |
-4.836566 | -11.09751 | 6.260947 | -5.195549 | 2.677355 | -7.513920 | 13.081879 | 6.089538 | 10.968408 | 28.960226 | 9.657074 | 11.850299 |
-8.777503 | 11.770712 | -20.54822 | -5.583049 | -16.81631 | 8.038805 | 17.304538 | 21.286913 | 11.763922 | 9.657074 | 37.874729 | 18.015671 |
-9.287324 | -8.773656 | -0.513667 | 0.919372 | -9.041105 | -0.246218 | 21.015460 | 10.047209 | 14.665364 | 11.850299 | 18.015671 | 36.253786 |
ginvlhs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
8.359 | 5.267 | 3.092 | -10.29 | 5.198 | 3.161 | -8.580 | -10.61 | -5.982 | -4.837 | -8.778 | -9.287 |
5.267 | 59.428 | -54.16 | -17.25 | -18.73 | 23.995 | -15.43 | 18.900 | -1.939 | -11.10 | 11.771 | -8.774 |
3.092 | -54.16 | 57.254 | 6.962 | 23.926 | -20.83 | 6.851 | -29.51 | -4.044 | 6.261 | -20.55 | -0.514 |
-10.29 | -17.25 | 6.962 | 38.276 | -0.381 | -9.909 | 4.368 | 5.237 | -4.419 | -5.196 | -5.583 | 0.919 |
5.198 | -18.73 | 23.926 | -0.381 | 22.168 | -16.97 | -7.763 | -10.15 | 0.180 | 2.677 | -16.82 | -9.041 |
3.161 | 23.995 | -20.83 | -9.909 | -16.97 | 20.131 | -0.817 | -0.458 | -6.162 | -7.514 | 8.039 | -0.246 |
-8.580 | -15.43 | 6.851 | 4.368 | -7.763 | -0.817 | 33.341 | 2.547 | 5.557 | 13.082 | 17.305 | 21.015 |
-10.61 | 18.900 | -29.51 | 5.237 | -10.15 | -0.458 | 2.547 | 40.582 | 16.188 | 6.090 | 21.287 | 10.047 |
-5.982 | -1.939 | -4.044 | -4.419 | 0.180 | -6.162 | 5.557 | 16.188 | 28.140 | 10.968 | 11.764 | 14.665 |
-4.837 | -11.10 | 6.261 | -5.196 | 2.677 | -7.514 | 13.082 | 6.090 | 10.968 | 28.960 | 9.657 | 11.850 |
-8.778 | 11.771 | -20.55 | -5.583 | -16.82 | 8.039 | 17.305 | 21.287 | 11.764 | 9.657 | 37.875 | 18.016 |
-9.287 | -8.774 | -0.514 | 0.919 | -9.041 | -0.246 | 21.015 | 10.047 | 14.665 | 11.850 | 18.016 | 36.254 |
Compute gl = ginvlhs*lhs = matrix of expectations of solutions |
gl | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.500 | 0.250 | 0.250 | -0.000 | 0.250 | 0.250 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
0.250 | 0.625 | -0.375 | -0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 |
0.250 | -0.375 | 0.625 | 0.000 | 0.125 | 0.125 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 |
-0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 |
0.250 | 0.125 | 0.125 | 0.000 | 0.625 | -0.375 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 |
0.250 | 0.125 | 0.125 | -0.000 | -0.375 | 0.625 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 1.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 1.000 | -0.000 | -0.000 | 0.000 | 0.000 |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 |
0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
-0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 1.000 | 0.000 |
-0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 |
Notice that lg = gl (i.e., lhs*ginvlhs = lhs*ginvlhs) |
lg | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.500 | 0.250 | 0.250 | -0.000 | 0.250 | 0.250 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 |
0.250 | 0.625 | -0.375 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
0.250 | -0.375 | 0.625 | -0.000 | 0.125 | 0.125 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
0.000 | 0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 |
0.250 | 0.125 | 0.125 | 0.000 | 0.625 | -0.375 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 |
0.250 | 0.125 | 0.125 | -0.000 | -0.375 | 0.625 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 1.000 | -0.000 | -0.000 | -0.000 | -0.000 |
0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 1.000 | -0.000 | -0.000 | -0.000 |
0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 |
0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 1.000 |
Verify that lgl = lhs (i.e., lhs*ginvlhs*lhs = lhs => generalized inverse is correct) |
lgl | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 |
0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.000 | 0.062 | 0.015 | 0.015 | 0.015 | 0.005 |
0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
0.072 | 0.052 | 0.021 | 0.041 | 0.072 | -0.000 | 0.020 | -0.000 | -0.000 | -0.000 | 0.031 | 0.021 |
0.124 | 0.031 | 0.093 | 0.062 | -0.000 | 0.124 | 0.000 | 0.063 | 0.031 | 0.031 | -0.000 | -0.000 |
0.020 | 0.020 | -0.000 | 0.000 | 0.020 | 0.000 | 0.079 | 0.012 | 0.010 | -0.016 | -0.025 | -0.020 |
0.062 | -0.000 | 0.063 | -0.000 | -0.000 | 0.063 | 0.012 | 0.106 | -0.017 | -0.000 | -0.025 | -0.000 |
0.031 | 0.015 | 0.015 | 0.031 | -0.000 | 0.031 | 0.010 | -0.017 | 0.075 | -0.000 | -0.000 | -0.020 |
0.031 | 0.015 | 0.015 | 0.031 | -0.000 | 0.031 | -0.016 | 0.000 | -0.000 | 0.063 | -0.000 | -0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.031 | -0.000 | -0.025 | -0.025 | -0.000 | -0.000 | 0.081 | 0.000 |
0.021 | 0.016 | 0.005 | 0.011 | 0.021 | -0.000 | -0.020 | 0.000 | -0.020 | -0.000 | 0.000 | 0.062 |
Compute ranklhs = rank of the MME = trace of ginvlhs*lhs |
ranklhs |
---|
10 |
Compute sol = vector of solutions for the MME |
sol |
---|
133.21967 |
71.279177 |
61.940495 |
8.3637818 |
82.72791 |
50.491762 |
0.8664891 |
-0.651929 |
-1.721975 |
1.3518717 |
0.4773831 |
-1.334495 |
sol |
---|
133.22 |
71.28 |
61.94 |
8.36 |
82.73 |
50.49 |
0.87 |
-0.65 |
-1.72 |
1.35 |
0.48 |
-1.33 |
Compute sesol = standard error of solutions |
sesol |
---|
2.89 |
7.71 |
7.57 |
6.19 |
4.71 |
4.49 |
5.77 |
6.37 |
5.30 |
5.38 |
6.15 |
6.02 |
Computation of Additive, Nonadditive, and Total Genetic Predictions |
Using matrix computations |
Define ka = coefficient matrix of multiple trait additive genetic predictions deviated from B |
ka | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0.75 | -0.75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
ka | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 1.00 | -1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
Compute kagl = ka*ginvlhs*lhs to check if functions in matrix ka are estimable |
(kagl = ka if functions in ka are estimable) |
kagl | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | 1.00 | -1.00 | 0.00 | -0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 |
0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 1.00 | -0.00 | -0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | -0.00 |
-0.00 | 0.50 | -0.50 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 1.00 | 0.00 |
-0.00 | 0.75 | -0.75 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 1.00 |
difkaglka | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 |
0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
-0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
Compute uaka = vector of multibreed additive genetic predictions |
uaka |
---|
10.21 |
-0.65 |
2.95 |
6.02 |
5.15 |
5.67 |
Compute vepuaka = matrix of variance of errors of additive genetic predictions |
vepuaka | |||||
---|---|---|---|---|---|
213.78 | 50.96 | 109.02 | 97.09 | 150.99 | 164.80 |
50.96 | 40.58 | 40.39 | 30.30 | 45.49 | 46.36 |
109.02 | 40.39 | 86.50 | 59.59 | 85.23 | 96.49 |
97.09 | 30.30 | 59.59 | 67.85 | 73.39 | 79.08 |
150.99 | 45.49 | 85.23 | 73.39 | 126.45 | 122.50 |
164.80 | 46.36 | 96.49 | 79.08 | 122.50 | 150.43 |
Compute sepuaka = vector of standard errors of additive genetic predictions |
sepuaka |
---|
14.62 |
6.37 |
9.30 |
8.24 |
11.24 |
12.26 |
Define kn = coefficient matrix of direct and maternal nonadditive genetic predictions |
Assume that males will be mated to (1/2A 1/2B) females and viceversa |
kn | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
kn | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Compute kngl = kn*ginvlhs*lhs to check if functions in matrix kn are estimable |
(kngl = kn if functions in kn are estimable) |
kngl | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
difknglkn | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
Compute uakn = vector of multibreed nonadditive genetic predictions |
uakn |
---|
4.18 |
4.18 |
4.18 |
4.18 |
4.18 |
4.18 |
Compute vepuakn = matrix of variance of errors of nonadditive genetic predictions |
vepuakn | |||||
---|---|---|---|---|---|
9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
Compute sepuakn = vector of standard errors of nonadditive genetic predictions |
sepuakn |
---|
3.09 |
3.09 |
3.09 |
3.09 |
3.09 |
3.09 |
Define kt = coefficient matrix of total direct and maternal genetic predictions |
Assume that males will be mated to (1/2A 1/2B) females and viceversa |
kt | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | -1 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0.75 | -0.75 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
kt | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 1.00 | -1.00 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
Compute ktgl = kt*ginvlhs*lhs to check if functions in matrix kt are estimable |
(ktgl = kt if functions in kt are estimable) |
ktgl | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | 1.00 | -1.00 | 0.50 | -0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | -0.00 | 0.00 | 0.50 | -0.00 | 0.00 | 0.00 | 1.00 | -0.00 | -0.00 | -0.00 | -0.00 |
0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.00 | -0.00 | -0.00 |
-0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | -0.00 |
-0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 1.00 | 0.00 |
-0.00 | 0.75 | -0.75 | 0.50 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 1.00 |
difktglkt | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 |
-0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
-0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 |
Compute uakt = vector of multibreed total genetic predictions |
uakt |
---|
14.39 |
3.53 |
7.13 |
10.20 |
9.33 |
9.85 |
Compute vepuakt = matrix of variance of errors of total genetic predictions |
vepuakt | |||||
---|---|---|---|---|---|
203.51 | 53.22 | 100.41 | 88.08 | 141.79 | 155.82 |
53.22 | 55.39 | 44.32 | 33.83 | 48.84 | 49.92 |
100.41 | 44.32 | 79.54 | 52.25 | 77.69 | 89.18 |
88.08 | 33.83 | 52.25 | 60.12 | 65.46 | 71.38 |
141.79 | 48.84 | 77.69 | 65.46 | 118.32 | 114.61 |
155.82 | 49.92 | 89.18 | 71.38 | 114.61 | 142.76 |
Compute sepuakt = vector of standard errors of total genetic predictions |
sepuakt |
---|
14.27 |
7.44 |
8.92 |
7.75 |
10.88 |
11.95 |