| GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
| INPUT DATA FILE |
| Obs | animal | sire | dam | afa | afb | sfa | sfb | dfa | dfb | mgsfa | mgsfb | mgdfa | mgdfb | sex | bw | ww | snp01 | snp02 | snp03 | snp04 | snp05 | snp06 | snp07 | snp08 | snp09 | snp10 | snp11 | snp12 | snp13 | snp14 | snp15 | snp16 | snp17 | snp18 | snp19 | snp20 | snp21 | snp22 | snp23 | snp24 | snp25 | snp26 | snp27 | snp28 | snp29 | snp30 | snp31 | snp32 | snp33 | snp34 | snp35 | snp36 | snp37 | snp38 | snp39 | snp40 | snp41 | snp42 | snp43 | snp44 | snp45 | snp46 | snp47 | snp48 | snp49 | snp50 | snp51 | snp52 | snp53 | snp54 | snp55 | snp56 | snp57 | snp58 | snp59 | snp60 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1.00 | 0.00 | 1 | 0 | 1.0 | 0.0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
| 2 | 2 | 0 | 0 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
| 3 | 3 | 0 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
| 4 | 4 | 1 | 0 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
| 5 | 5 | 1 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
| 6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
| GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
| Model_1_GEV_02_1T_Polygenic_October-30-2014_a November 1, 2014 |
| GENETIC AND GENOMIC EVALUATION NOTES |
| CHAPTER GEV_02 ALL MODELS |
| MULTIPLE TRAIT GENETIC AND GENOMIC MODELS WITH: |
| 1) UNEQUAL RESIDUAL, ADDITIVE GENETIC, AND NONADDITIVE GENETIC COVARIANCE MATRICES ACROSS BREED GROUPS |
| 2) EQUAL RESIDUAL COVARIANCE MATRIX, UNEQUAL ADDITIVE AND NONADDITIVE GENETIC COVARIANCE MATRICES |
| 3) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, UNEQUAL NONADDITIVE GENETIC COVARIANCE MATRICES |
| 4) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, NO RANDOM NONADDITIVE GENETIC EFFECTS |
| Mauricio A. Elzo, University of Florida, maelzo@ufl.edu |
| Read input dataset (SAS file) |
| datmat = matrix of input data |
| datmat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | COL19 | COL20 | COL21 | COL22 | COL23 | COL24 | COL25 | COL26 | COL27 | COL28 | COL29 | COL30 | COL31 | COL32 | COL33 | COL34 | COL35 | COL36 | COL37 | COL38 | COL39 | COL40 | COL41 | COL42 | COL43 | COL44 | COL45 | COL46 | COL47 | COL48 | COL49 | COL50 | COL51 | COL52 | COL53 | COL54 | COL55 | COL56 | COL57 | COL58 | COL59 | COL60 | COL61 | COL62 | COL63 | COL64 | COL65 | COL66 | COL67 | COL68 | COL69 | COL70 | COL71 | COL72 | COL73 | COL74 | COL75 | COL76 | |
| ROW1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
| ROW2 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
| ROW3 | 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
| ROW4 | 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
| ROW5 | 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
| ROW6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
| Read allele frequencies input dataset (SAS file) |
| ntsnp |
|---|
| 60 |
| snpfreq | |
|---|---|
| 1 | 0.1509 |
| 2 | 0.4252 |
| 3 | 0.1842 |
| 4 | 0.5314 |
| 5 | 0.6242 |
| 6 | 0.4292 |
| 7 | 0.2036 |
| 8 | 0.3518 |
| 9 | 0.5454 |
| 10 | 0.1048 |
| 11 | 0.3338 |
| 12 | 0.3284 |
| 13 | 0.006 |
| 14 | 0.502 |
| 15 | 0.2263 |
| 16 | 0.4706 |
| 17 | 0.0808 |
| 18 | 0.7216 |
| 19 | 0.026 |
| 20 | 0.3271 |
| 21 | 0.8718 |
| 22 | 0.0948 |
| 23 | 0.3825 |
| 24 | 0.0561 |
| 25 | 0.5401 |
| 26 | 0.6809 |
| 27 | 0.785 |
| 28 | 0.3758 |
| 29 | 0.0067 |
| 30 | 0.7891 |
| 31 | 0.0581 |
| 32 | 0.1429 |
| 33 | 0.6041 |
| 34 | 0.7196 |
| 35 | 0.9386 |
| 36 | 0.6335 |
| 37 | 0.4312 |
| 38 | 0.0033 |
| 39 | 0.2717 |
| 40 | 0.2203 |
| 41 | 0.5794 |
| 42 | 0.2023 |
| 43 | 0.5134 |
| 44 | 0.755 |
| 45 | 0.5648 |
| 46 | 0.518 |
| 47 | 0.3458 |
| 48 | 0.4806 |
| 49 | 0.3258 |
| 50 | 0.3117 |
| 51 | 0.7503 |
| 52 | 0.4132 |
| 53 | 0.743 |
| 54 | 0.6061 |
| 55 | 0.9933 |
| 56 | 0.7377 |
| 57 | 0.9399 |
| 58 | 0.4419 |
| 59 | 0.1295 |
| 60 | 0.0928 |
| Enter Parameters for Current Run |
| Enter restronsol = 1 to impose restrictions on solutions to solve the MME, else = 0 if not |
| restronsol |
|---|
| 0 |
| No restrictions imposed on solutions to solve MME |
| Enter nt = Number of traits |
| nt |
|---|
| 1 |
| Enter nrec = Number of records |
| nrec |
|---|
| 6 |
| Enter nfixpol = Number of fixed environmental and polygenic genetic effects |
| nfixpol |
|---|
| 6 |
| Enter nanim = Number of animals |
| nanim |
|---|
| 6 |
| Enter nsnp = number of marker locus genomic effects in the model |
| nsnp |
|---|
| 0 |
| Enter 1 if random marker genomic effects in the model, else enter zero |
| ranma |
|---|
| 0 |
| Enter 1 if random additive polygenic genetic effects in the model, else enter zero |
| addpol |
|---|
| 1 |
| Enter 1 if random nonadditive polygenic genetic effects in the model, else enter zero |
| nadpol |
|---|
| 0 |
| Enter 1 if zma values are [0,1,2] and 2 if zma values are [VanRaden(2009)] |
| zmaval |
|---|
| 1 |
| Compute nf = Number of equations for fixed effects in the MME |
| nf |
|---|
| 6 |
| Compute nma = Number of equations for marker locus additive genetic effects in the MME |
| nma |
|---|
| 0 |
| Compute nga = Number of equations for random polygenic additive genetic effects in the MME |
| nga |
|---|
| 6 |
| Compute ngn = Number of equations for random polygenic nonadditive genetic effects in the MME |
| ngn |
|---|
| 0 |
| Compute neq = nf+nma+nga+ngn = total number of equations in the MME |
| neq |
|---|
| 12 |
| Define pedigf = pedigree file with breed composition of animals, sires, and dams |
| pedigf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
| Construct xf = matrix of fixed and random effects |
| Construct fixed effects in matrix xf |
| Construct random polygenic additive genetic effects in matrix xf |
| xf | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Make x = xf, i.e., use computed xf |
| x | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Enter intrabreed and interbreed environmental variances |
| veaa | vebb | veab |
|---|---|---|
| 49 | 16 | 25 |
| Compute vef = block-diagonal matrix of multibreed residual covariance matrices for individual animals |
| pedigf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
| vef | |||||
|---|---|---|---|---|---|
| 49 | 0 | 0 | 0 | 0 | 0 |
| 0 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 32.5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 32.5 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32.5 | 0 |
| 0 | 0 | 0 | 0 | 0 | 47 |
| Make r = vef |
| r = block-diagonal matrix of residual covariance matrices for individual animals |
| r | |||||
|---|---|---|---|---|---|
| 49 | 0 | 0 | 0 | 0 | 0 |
| 0 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 32.5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 32.5 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32.5 | 0 |
| 0 | 0 | 0 | 0 | 0 | 47 |
| invr = inverse of block-diagonal matrix of residual covariance matrices for individual animals |
| invr | |||||
|---|---|---|---|---|---|
| 0.0204082 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.0625 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.0307692 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.0307692 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.0307692 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.0212766 |
| Read yf = vector of records |
| yf |
|---|
| 289 |
| 245 |
| 256 |
| 261 |
| 292 |
| 286 |
| Make y = yf, i.e., use read yf |
| y |
|---|
| 289 |
| 245 |
| 256 |
| 261 |
| 292 |
| 286 |
| Compute xtinvr = x transpose times r |
| xtinvr | |||||
|---|---|---|---|---|---|
| 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
| 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
| 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
| 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
| 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
| 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
| 0.0204082 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.0625 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.0307692 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.0307692 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.0307692 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.0212766 |
| Compute xtinvrx = x transpose times r times x |
| xtinvrx | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
| 0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
| 0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
| 0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
| 0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
| 0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
| 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0204082 | 0 | 0 | 0 | 0 | 0 |
| 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0.0307692 | 0 | 0 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0 | 0.0307692 | 0 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0.0307692 | 0 |
| 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 |
| Enter intrabreed and interbreed additive genetic covariance matrices |
| vaaa | vabb | vaab |
|---|---|---|
| 36 | 44 | 22 |
| Compute vaf = multibreed additive genetic covariance matrices for individual animals |
| vaf | |||||
|---|---|---|---|---|---|
| 36 | 0 | 0 | 0 | 0 | 0 |
| 0 | 44 | 0 | 0 | 0 | 0 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 0 |
| 0 | 0 | 0 | 0 | 0 | 43.5 |
| Compute daf = block-diagonal matrix of residual additive genetic covariance matrices |
| Recall: (Ga)-1 = (I - 1/2 P') (Block-diagonal Da)-1 (I - 1/2 P) for [dai]-1 blocks |
| daf | |||||
|---|---|---|---|---|---|
| 36 | 0 | 0 | 0 | 0 | 0 |
| 0 | 44 | 0 | 0 | 0 | 0 |
| 0 | 0 | 29 | 0 | 0 | 0 |
| 0 | 0 | 0 | 31 | 0 | 0 |
| 0 | 0 | 0 | 0 | 20 | 0 |
| 0 | 0 | 0 | 0 | 0 | 24.5 |
| Make da = daf, i.e., use computed da |
| Compute dainv = inverse of da |
| dainv = inverse of block-diagonal matrix of residual additive genetic covariance matrices |
| dainv | |||||
|---|---|---|---|---|---|
| 0.0277778 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.0227273 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.0344828 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.0322581 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.05 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.0408163 |
| Compute gainv = inverse of the matrix of multibreed additive genetic covariances |
| Using algorithm to compute gainv directly; Elzo (1990a),JAS 68:1215-1228 |
| gainv | |||||
|---|---|---|---|---|---|
| 0.0585464 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
| 0.0125 | 0.043848 | -0.017241 | 0 | -0.025 | 0 |
| 0.0102041 | -0.017241 | 0.0446868 | 0 | 0 | -0.020408 |
| -0.016129 | 0 | 0 | 0.0322581 | 0 | 0 |
| -0.025 | -0.025 | 0 | 0 | 0.05 | 0 |
| -0.020408 | 0 | -0.020408 | 0 | 0 | 0.0408163 |
| gainv | |||||
|---|---|---|---|---|---|
| 0.059 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
| 0.013 | 0.044 | -0.017 | 0.000 | -0.025 | 0.000 |
| 0.010 | -0.017 | 0.045 | 0.000 | 0.000 | -0.020 |
| -0.016 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 |
| -0.025 | -0.025 | 0.000 | 0.000 | 0.050 | 0.000 |
| -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.041 |
| Compute lhs = left hand side of the MME |
| Add gainv to lhs |
| lhs | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
| 0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
| 0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
| 0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
| 0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
| 0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
| 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0789545 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
| 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0.0125 | 0.106348 | -0.017241 | 0 | -0.025 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0102041 | -0.017241 | 0.0754561 | 0 | 0 | -0.020408 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | -0.016129 | 0 | 0 | 0.0630273 | 0 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | -0.025 | -0.025 | 0 | 0 | 0.0807692 | 0 |
| 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | -0.020408 | 0 | -0.020408 | 0 | 0 | 0.0620929 |
| lhs | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 |
| 0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
| 0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 |
| 0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
| 0.072 | 0.052 | 0.021 | 0.041 | 0.072 | 0.000 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 |
| 0.124 | 0.031 | 0.093 | 0.062 | 0.000 | 0.124 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 |
| 0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.079 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
| 0.063 | 0.000 | 0.063 | 0.000 | 0.000 | 0.063 | 0.013 | 0.106 | -0.017 | 0.000 | -0.025 | 0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.010 | -0.017 | 0.075 | 0.000 | 0.000 | -0.020 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | -0.016 | 0.000 | 0.000 | 0.063 | 0.000 | 0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | -0.025 | -0.025 | 0.000 | 0.000 | 0.081 | 0.000 |
| 0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.062 |
| Compute rhs = right hand side of the MME |
| rhs |
|---|
| 52.187873 |
| 22.907943 |
| 29.27993 |
| 27.934861 |
| 20.967681 |
| 31.220192 |
| 5.8979592 |
| 15.3125 |
| 7.8769231 |
| 8.0307692 |
| 8.9846154 |
| 6.0851064 |
| rhs |
|---|
| 52.19 |
| 22.91 |
| 29.28 |
| 27.93 |
| 20.97 |
| 31.22 |
| 5.90 |
| 15.31 |
| 7.88 |
| 8.03 |
| 8.98 |
| 6.09 |
| Compute ginvlhs = generalized inverse of the left hand side of the MME |
| ginvlhs | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 8.359137 | 5.266819 | 3.092319 | -10.29009 | 5.198355 | 3.160782 | -8.580348 | -10.61224 | -5.982225 | -4.836566 | -8.777503 | -9.287324 |
| 5.266819 | 59.428486 | -54.16167 | -17.25187 | -18.72793 | 23.994751 | -15.43112 | 18.900097 | -1.938709 | -11.09751 | 11.770712 | -8.773656 |
| 3.092319 | -54.16167 | 57.253986 | 6.961776 | 23.926288 | -20.83397 | 6.850768 | -29.51234 | -4.043516 | 6.260947 | -20.54822 | -0.513667 |
| -10.29009 | -17.25187 | 6.961776 | 38.276122 | -0.381300 | -9.908793 | 4.368033 | 5.237111 | -4.418830 | -5.195549 | -5.583049 | 0.919372 |
| 5.198355 | -18.72793 | 23.926288 | -0.381300 | 22.168260 | -16.96990 | -7.763188 | -10.15474 | 0.179990 | 2.677355 | -16.81631 | -9.041105 |
| 3.160782 | 23.994751 | -20.83397 | -9.908793 | -16.96990 | 20.130687 | -0.817160 | -0.457500 | -6.162215 | -7.513920 | 8.038805 | -0.246218 |
| -8.580348 | -15.43112 | 6.850768 | 4.368033 | -7.763188 | -0.817160 | 33.340935 | 2.546740 | 5.557420 | 13.081879 | 17.304538 | 21.015460 |
| -10.61224 | 18.900097 | -29.51234 | 5.237111 | -10.15474 | -0.457500 | 2.546740 | 40.582074 | 16.187956 | 6.089538 | 21.286913 | 10.047209 |
| -5.982225 | -1.938709 | -4.043516 | -4.418830 | 0.179990 | -6.162215 | 5.557420 | 16.187956 | 28.140357 | 10.968408 | 11.763922 | 14.665364 |
| -4.836566 | -11.09751 | 6.260947 | -5.195549 | 2.677355 | -7.513920 | 13.081879 | 6.089538 | 10.968408 | 28.960226 | 9.657074 | 11.850299 |
| -8.777503 | 11.770712 | -20.54822 | -5.583049 | -16.81631 | 8.038805 | 17.304538 | 21.286913 | 11.763922 | 9.657074 | 37.874729 | 18.015671 |
| -9.287324 | -8.773656 | -0.513667 | 0.919372 | -9.041105 | -0.246218 | 21.015460 | 10.047209 | 14.665364 | 11.850299 | 18.015671 | 36.253786 |
| ginvlhs | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 8.359 | 5.267 | 3.092 | -10.29 | 5.198 | 3.161 | -8.580 | -10.61 | -5.982 | -4.837 | -8.778 | -9.287 |
| 5.267 | 59.428 | -54.16 | -17.25 | -18.73 | 23.995 | -15.43 | 18.900 | -1.939 | -11.10 | 11.771 | -8.774 |
| 3.092 | -54.16 | 57.254 | 6.962 | 23.926 | -20.83 | 6.851 | -29.51 | -4.044 | 6.261 | -20.55 | -0.514 |
| -10.29 | -17.25 | 6.962 | 38.276 | -0.381 | -9.909 | 4.368 | 5.237 | -4.419 | -5.196 | -5.583 | 0.919 |
| 5.198 | -18.73 | 23.926 | -0.381 | 22.168 | -16.97 | -7.763 | -10.15 | 0.180 | 2.677 | -16.82 | -9.041 |
| 3.161 | 23.995 | -20.83 | -9.909 | -16.97 | 20.131 | -0.817 | -0.458 | -6.162 | -7.514 | 8.039 | -0.246 |
| -8.580 | -15.43 | 6.851 | 4.368 | -7.763 | -0.817 | 33.341 | 2.547 | 5.557 | 13.082 | 17.305 | 21.015 |
| -10.61 | 18.900 | -29.51 | 5.237 | -10.15 | -0.458 | 2.547 | 40.582 | 16.188 | 6.090 | 21.287 | 10.047 |
| -5.982 | -1.939 | -4.044 | -4.419 | 0.180 | -6.162 | 5.557 | 16.188 | 28.140 | 10.968 | 11.764 | 14.665 |
| -4.837 | -11.10 | 6.261 | -5.196 | 2.677 | -7.514 | 13.082 | 6.090 | 10.968 | 28.960 | 9.657 | 11.850 |
| -8.778 | 11.771 | -20.55 | -5.583 | -16.82 | 8.039 | 17.305 | 21.287 | 11.764 | 9.657 | 37.875 | 18.016 |
| -9.287 | -8.774 | -0.514 | 0.919 | -9.041 | -0.246 | 21.015 | 10.047 | 14.665 | 11.850 | 18.016 | 36.254 |
| Compute gl = ginvlhs*lhs = matrix of expectations of solutions |
| gl | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.500 | 0.250 | 0.250 | -0.000 | 0.250 | 0.250 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| 0.250 | 0.625 | -0.375 | -0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 |
| 0.250 | -0.375 | 0.625 | 0.000 | 0.125 | 0.125 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 |
| -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 |
| 0.250 | 0.125 | 0.125 | 0.000 | 0.625 | -0.375 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 |
| 0.250 | 0.125 | 0.125 | -0.000 | -0.375 | 0.625 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 1.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 1.000 | -0.000 | -0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 |
| 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
| -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 1.000 | 0.000 |
| -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 |
| Notice that lg = gl (i.e., lhs*ginvlhs = lhs*ginvlhs) |
| lg | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.500 | 0.250 | 0.250 | -0.000 | 0.250 | 0.250 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 |
| 0.250 | 0.625 | -0.375 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
| 0.250 | -0.375 | 0.625 | -0.000 | 0.125 | 0.125 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| 0.000 | 0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 |
| 0.250 | 0.125 | 0.125 | 0.000 | 0.625 | -0.375 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 |
| 0.250 | 0.125 | 0.125 | -0.000 | -0.375 | 0.625 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 1.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 1.000 | -0.000 | -0.000 | -0.000 |
| 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 |
| 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 1.000 |
| Verify that lgl = lhs (i.e., lhs*ginvlhs*lhs = lhs => generalized inverse is correct) |
| lgl | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 |
| 0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
| 0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.000 | 0.062 | 0.015 | 0.015 | 0.015 | 0.005 |
| 0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
| 0.072 | 0.052 | 0.021 | 0.041 | 0.072 | -0.000 | 0.020 | -0.000 | -0.000 | -0.000 | 0.031 | 0.021 |
| 0.124 | 0.031 | 0.093 | 0.062 | -0.000 | 0.124 | 0.000 | 0.063 | 0.031 | 0.031 | -0.000 | -0.000 |
| 0.020 | 0.020 | -0.000 | 0.000 | 0.020 | 0.000 | 0.079 | 0.012 | 0.010 | -0.016 | -0.025 | -0.020 |
| 0.062 | -0.000 | 0.063 | -0.000 | -0.000 | 0.063 | 0.012 | 0.106 | -0.017 | -0.000 | -0.025 | -0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | -0.000 | 0.031 | 0.010 | -0.017 | 0.075 | -0.000 | -0.000 | -0.020 |
| 0.031 | 0.015 | 0.015 | 0.031 | -0.000 | 0.031 | -0.016 | 0.000 | -0.000 | 0.063 | -0.000 | -0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.031 | -0.000 | -0.025 | -0.025 | -0.000 | -0.000 | 0.081 | 0.000 |
| 0.021 | 0.016 | 0.005 | 0.011 | 0.021 | -0.000 | -0.020 | 0.000 | -0.020 | -0.000 | 0.000 | 0.062 |
| Compute ranklhs = rank of the MME = trace of ginvlhs*lhs |
| ranklhs |
|---|
| 10 |
| Compute sol = vector of solutions for the MME |
| sol |
|---|
| 133.21967 |
| 71.279177 |
| 61.940495 |
| 8.3637818 |
| 82.72791 |
| 50.491762 |
| 0.8664891 |
| -0.651929 |
| -1.721975 |
| 1.3518717 |
| 0.4773831 |
| -1.334495 |
| sol |
|---|
| 133.22 |
| 71.28 |
| 61.94 |
| 8.36 |
| 82.73 |
| 50.49 |
| 0.87 |
| -0.65 |
| -1.72 |
| 1.35 |
| 0.48 |
| -1.33 |
| Compute sesol = standard error of solutions |
| sesol |
|---|
| 2.89 |
| 7.71 |
| 7.57 |
| 6.19 |
| 4.71 |
| 4.49 |
| 5.77 |
| 6.37 |
| 5.30 |
| 5.38 |
| 6.15 |
| 6.02 |
| Computation of Additive, Nonadditive, and Total Genetic Predictions |
| Using matrix computations |
| Define ka = coefficient matrix of multiple trait additive genetic predictions deviated from B |
| ka | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0.75 | -0.75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| ka | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.00 | 0.75 | -0.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| Compute kagl = ka*ginvlhs*lhs to check if functions in matrix ka are estimable |
| (kagl = ka if functions in ka are estimable) |
| kagl | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | 1.00 | -1.00 | 0.00 | -0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 |
| 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 1.00 | -0.00 | -0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.00 | 0.00 | -0.00 |
| -0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | -0.00 |
| -0.00 | 0.50 | -0.50 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 1.00 | 0.00 |
| -0.00 | 0.75 | -0.75 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 1.00 |
| difkaglka | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 |
| 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 |
| -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 |
| -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
| -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
| Compute uaka = vector of multibreed additive genetic predictions |
| uaka |
|---|
| 10.21 |
| -0.65 |
| 2.95 |
| 6.02 |
| 5.15 |
| 5.67 |
| Compute vepuaka = matrix of variance of errors of additive genetic predictions |
| vepuaka | |||||
|---|---|---|---|---|---|
| 213.78 | 50.96 | 109.02 | 97.09 | 150.99 | 164.80 |
| 50.96 | 40.58 | 40.39 | 30.30 | 45.49 | 46.36 |
| 109.02 | 40.39 | 86.50 | 59.59 | 85.23 | 96.49 |
| 97.09 | 30.30 | 59.59 | 67.85 | 73.39 | 79.08 |
| 150.99 | 45.49 | 85.23 | 73.39 | 126.45 | 122.50 |
| 164.80 | 46.36 | 96.49 | 79.08 | 122.50 | 150.43 |
| Compute sepuaka = vector of standard errors of additive genetic predictions |
| sepuaka |
|---|
| 14.62 |
| 6.37 |
| 9.30 |
| 8.24 |
| 11.24 |
| 12.26 |
| Define kn = coefficient matrix of direct and maternal nonadditive genetic predictions |
| Assume that males will be mated to (1/2A 1/2B) females and viceversa |
| kn | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| kn | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Compute kngl = kn*ginvlhs*lhs to check if functions in matrix kn are estimable |
| (kngl = kn if functions in kn are estimable) |
| kngl | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| difknglkn | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 |
| Compute uakn = vector of multibreed nonadditive genetic predictions |
| uakn |
|---|
| 4.18 |
| 4.18 |
| 4.18 |
| 4.18 |
| 4.18 |
| 4.18 |
| Compute vepuakn = matrix of variance of errors of nonadditive genetic predictions |
| vepuakn | |||||
|---|---|---|---|---|---|
| 9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
| 9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
| 9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
| 9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
| 9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
| 9.57 | 9.57 | 9.57 | 9.57 | 9.57 | 9.57 |
| Compute sepuakn = vector of standard errors of nonadditive genetic predictions |
| sepuakn |
|---|
| 3.09 |
| 3.09 |
| 3.09 |
| 3.09 |
| 3.09 |
| 3.09 |
| Define kt = coefficient matrix of total direct and maternal genetic predictions |
| Assume that males will be mated to (1/2A 1/2B) females and viceversa |
| kt | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | -1 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0.75 | -0.75 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| kt | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.00 | 0.75 | -0.75 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| Compute ktgl = kt*ginvlhs*lhs to check if functions in matrix kt are estimable |
| (ktgl = kt if functions in kt are estimable) |
| ktgl | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | 1.00 | -1.00 | 0.50 | -0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | -0.00 | 0.00 | 0.50 | -0.00 | 0.00 | 0.00 | 1.00 | -0.00 | -0.00 | -0.00 | -0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | 0.00 | 0.00 | 1.00 | -0.00 | -0.00 | -0.00 |
| -0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | -0.00 |
| -0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 1.00 | 0.00 |
| -0.00 | 0.75 | -0.75 | 0.50 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 1.00 |
| difktglkt | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 |
| -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 |
| -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
| -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 |
| Compute uakt = vector of multibreed total genetic predictions |
| uakt |
|---|
| 14.39 |
| 3.53 |
| 7.13 |
| 10.20 |
| 9.33 |
| 9.85 |
| Compute vepuakt = matrix of variance of errors of total genetic predictions |
| vepuakt | |||||
|---|---|---|---|---|---|
| 203.51 | 53.22 | 100.41 | 88.08 | 141.79 | 155.82 |
| 53.22 | 55.39 | 44.32 | 33.83 | 48.84 | 49.92 |
| 100.41 | 44.32 | 79.54 | 52.25 | 77.69 | 89.18 |
| 88.08 | 33.83 | 52.25 | 60.12 | 65.46 | 71.38 |
| 141.79 | 48.84 | 77.69 | 65.46 | 118.32 | 114.61 |
| 155.82 | 49.92 | 89.18 | 71.38 | 114.61 | 142.76 |
| Compute sepuakt = vector of standard errors of total genetic predictions |
| sepuakt |
|---|
| 14.27 |
| 7.44 |
| 8.92 |
| 7.75 |
| 10.88 |
| 11.95 |