| GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
| INPUT DATA FILE |
| Obs | animal | sire | dam | afa | afb | sfa | sfb | dfa | dfb | mgsfa | mgsfb | mgdfa | mgdfb | sex | bw | ww | snp01 | snp02 | snp03 | snp04 | snp05 | snp06 | snp07 | snp08 | snp09 | snp10 | snp11 | snp12 | snp13 | snp14 | snp15 | snp16 | snp17 | snp18 | snp19 | snp20 | snp21 | snp22 | snp23 | snp24 | snp25 | snp26 | snp27 | snp28 | snp29 | snp30 | snp31 | snp32 | snp33 | snp34 | snp35 | snp36 | snp37 | snp38 | snp39 | snp40 | snp41 | snp42 | snp43 | snp44 | snp45 | snp46 | snp47 | snp48 | snp49 | snp50 | snp51 | snp52 | snp53 | snp54 | snp55 | snp56 | snp57 | snp58 | snp59 | snp60 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1.00 | 0.00 | 1 | 0 | 1.0 | 0.0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
| 2 | 2 | 0 | 0 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
| 3 | 3 | 0 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
| 4 | 4 | 1 | 0 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
| 5 | 5 | 1 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
| 6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
| GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
| Model_2_GEV_02_1T_1SNP_Fixed_PolEffect_October-30-2014_a November 1, 2014 |
| GENETIC AND GENOMIC EVALUATION NOTES |
| CHAPTER GEV_02 ALL MODELS |
| MULTIPLE TRAIT GENETIC AND GENOMIC MODELS WITH: |
| 1) UNEQUAL RESIDUAL, ADDITIVE GENETIC, AND NONADDITIVE GENETIC COVARIANCE MATRICES ACROSS BREED GROUPS |
| 2) EQUAL RESIDUAL COVARIANCE MATRIX, UNEQUAL ADDITIVE AND NONADDITIVE GENETIC COVARIANCE MATRICES |
| 3) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, UNEQUAL NONADDITIVE GENETIC COVARIANCE MATRICES |
| 4) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, NO RANDOM NONADDITIVE GENETIC EFFECTS |
| Mauricio A. Elzo, University of Florida, maelzo@ufl.edu |
| Read input dataset (SAS file) |
| datmat = matrix of input data |
| datmat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | COL19 | COL20 | COL21 | COL22 | COL23 | COL24 | COL25 | COL26 | COL27 | COL28 | COL29 | COL30 | COL31 | COL32 | COL33 | COL34 | COL35 | COL36 | COL37 | COL38 | COL39 | COL40 | COL41 | COL42 | COL43 | COL44 | COL45 | COL46 | COL47 | COL48 | COL49 | COL50 | COL51 | COL52 | COL53 | COL54 | COL55 | COL56 | COL57 | COL58 | COL59 | COL60 | COL61 | COL62 | COL63 | COL64 | COL65 | COL66 | COL67 | COL68 | COL69 | COL70 | COL71 | COL72 | COL73 | COL74 | COL75 | COL76 | |
| ROW1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
| ROW2 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
| ROW3 | 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
| ROW4 | 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
| ROW5 | 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
| ROW6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
| Read allele frequencies input dataset (SAS file) |
| ntsnp |
|---|
| 60 |
| snpfreq | |
|---|---|
| 1 | 0.1509 |
| 2 | 0.4252 |
| 3 | 0.1842 |
| 4 | 0.5314 |
| 5 | 0.6242 |
| 6 | 0.4292 |
| 7 | 0.2036 |
| 8 | 0.3518 |
| 9 | 0.5454 |
| 10 | 0.1048 |
| 11 | 0.3338 |
| 12 | 0.3284 |
| 13 | 0.006 |
| 14 | 0.502 |
| 15 | 0.2263 |
| 16 | 0.4706 |
| 17 | 0.0808 |
| 18 | 0.7216 |
| 19 | 0.026 |
| 20 | 0.3271 |
| 21 | 0.8718 |
| 22 | 0.0948 |
| 23 | 0.3825 |
| 24 | 0.0561 |
| 25 | 0.5401 |
| 26 | 0.6809 |
| 27 | 0.785 |
| 28 | 0.3758 |
| 29 | 0.0067 |
| 30 | 0.7891 |
| 31 | 0.0581 |
| 32 | 0.1429 |
| 33 | 0.6041 |
| 34 | 0.7196 |
| 35 | 0.9386 |
| 36 | 0.6335 |
| 37 | 0.4312 |
| 38 | 0.0033 |
| 39 | 0.2717 |
| 40 | 0.2203 |
| 41 | 0.5794 |
| 42 | 0.2023 |
| 43 | 0.5134 |
| 44 | 0.755 |
| 45 | 0.5648 |
| 46 | 0.518 |
| 47 | 0.3458 |
| 48 | 0.4806 |
| 49 | 0.3258 |
| 50 | 0.3117 |
| 51 | 0.7503 |
| 52 | 0.4132 |
| 53 | 0.743 |
| 54 | 0.6061 |
| 55 | 0.9933 |
| 56 | 0.7377 |
| 57 | 0.9399 |
| 58 | 0.4419 |
| 59 | 0.1295 |
| 60 | 0.0928 |
| Enter Parameters for Current Run |
| Enter restronsol = 1 to impose restrictions on solutions to solve the MME, else = 0 if not |
| restronsol |
|---|
| 0 |
| No restrictions imposed on solutions to solve MME |
| Enter nt = Number of traits |
| nt |
|---|
| 1 |
| Enter nrec = Number of records |
| nrec |
|---|
| 6 |
| Enter nfixpol = Number of fixed environmental and polygenic genetic effects |
| nfixpol |
|---|
| 6 |
| Enter nanim = Number of animals |
| nanim |
|---|
| 6 |
| Enter nsnp = number of marker locus genomic effects in the model |
| nsnp |
|---|
| 1 |
| Enter 1 if random marker genomic effects in the model, else enter zero |
| ranma |
|---|
| 0 |
| Enter 1 if random additive polygenic genetic effects in the model, else enter zero |
| addpol |
|---|
| 1 |
| Enter 1 if random nonadditive polygenic genetic effects in the model, else enter zero |
| nadpol |
|---|
| 0 |
| Enter 1 if zma values are [0,1,2] and 2 if zma values are [VanRaden(2009)] |
| zmaval |
|---|
| 1 |
| Compute nf = Number of equations for fixed effects in the MME |
| nf |
|---|
| 6 |
| Compute nma = Number of equations for marker locus additive genetic effects in the MME |
| nma |
|---|
| 1 |
| Compute nga = Number of equations for random polygenic additive genetic effects in the MME |
| nga |
|---|
| 6 |
| Compute ngn = Number of equations for random polygenic nonadditive genetic effects in the MME |
| ngn |
|---|
| 0 |
| Compute neq = nf+nma+nga+ngn = total number of equations in the MME |
| neq |
|---|
| 13 |
| Define pedigf = pedigree file with breed composition of animals, sires, and dams |
| pedigf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
| Construct xf = matrix of fixed and random effects |
| Construct fixed effects in matrix xf |
| Construct marker locus additive genomic effects in matrix xf |
| xf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| Construct random polygenic additive genetic effects in matrix xf |
| xf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| Make x = xf, i.e., use computed xf |
| x | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0.5 | 0.5 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| Enter intrabreed and interbreed environmental variances |
| veaa | vebb | veab |
|---|---|---|
| 49 | 16 | 25 |
| Compute vef = block-diagonal matrix of multibreed residual covariance matrices for individual animals |
| pedigf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
| vef | |||||
|---|---|---|---|---|---|
| 49 | 0 | 0 | 0 | 0 | 0 |
| 0 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 32.5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 32.5 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32.5 | 0 |
| 0 | 0 | 0 | 0 | 0 | 47 |
| Make r = vef |
| r = block-diagonal matrix of residual covariance matrices for individual animals |
| r | |||||
|---|---|---|---|---|---|
| 49 | 0 | 0 | 0 | 0 | 0 |
| 0 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 32.5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 32.5 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32.5 | 0 |
| 0 | 0 | 0 | 0 | 0 | 47 |
| invr = inverse of block-diagonal matrix of residual covariance matrices for individual animals |
| invr | |||||
|---|---|---|---|---|---|
| 0.0204082 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.0625 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.0307692 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.0307692 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.0307692 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.0212766 |
| Read yf = vector of records |
| yf |
|---|
| 289 |
| 245 |
| 256 |
| 261 |
| 292 |
| 286 |
| Make y = yf, i.e., use read yf |
| y |
|---|
| 289 |
| 245 |
| 256 |
| 261 |
| 292 |
| 286 |
| Compute xtinvr = x transpose times r |
| xtinvr | |||||
|---|---|---|---|---|---|
| 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
| 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
| 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
| 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
| 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
| 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
| 0.0408163 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0425532 |
| 0.0204082 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.0625 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.0307692 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.0307692 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.0307692 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.0212766 |
| Compute xtinvrx = x transpose times r times x |
| xtinvrx | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.1756772 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
| 0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.1188851 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
| 0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0.0567921 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
| 0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0.1135843 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
| 0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.1141387 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
| 0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0.0615385 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
| 0.1756772 | 0.1188851 | 0.0567921 | 0.1135843 | 0.1141387 | 0.0615385 | 0.2590467 | 0.0408163 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0425532 |
| 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0408163 | 0.0204082 | 0 | 0 | 0 | 0 | 0 |
| 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0 | 0 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0 | 0 | 0.0307692 | 0 | 0 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0.0307692 | 0 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0.0307692 | 0 |
| 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0.0425532 | 0 | 0 | 0 | 0 | 0 | 0.0212766 |
| Enter intrabreed and interbreed additive genetic covariance matrices |
| vaaa | vabb | vaab |
|---|---|---|
| 36 | 44 | 22 |
| Compute vaf = multibreed additive genetic covariance matrices for individual animals |
| vaf | |||||
|---|---|---|---|---|---|
| 36 | 0 | 0 | 0 | 0 | 0 |
| 0 | 44 | 0 | 0 | 0 | 0 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 0 |
| 0 | 0 | 0 | 0 | 0 | 43.5 |
| Compute daf = block-diagonal matrix of residual additive genetic covariance matrices |
| Recall: (Ga)-1 = (I - 1/2 P') (Block-diagonal Da)-1 (I - 1/2 P) for [dai]-1 blocks |
| daf | |||||
|---|---|---|---|---|---|
| 36 | 0 | 0 | 0 | 0 | 0 |
| 0 | 44 | 0 | 0 | 0 | 0 |
| 0 | 0 | 29 | 0 | 0 | 0 |
| 0 | 0 | 0 | 31 | 0 | 0 |
| 0 | 0 | 0 | 0 | 20 | 0 |
| 0 | 0 | 0 | 0 | 0 | 24.5 |
| Make da = daf, i.e., use computed da |
| Compute dainv = inverse of da |
| dainv = inverse of block-diagonal matrix of residual additive genetic covariance matrices |
| dainv | |||||
|---|---|---|---|---|---|
| 0.0277778 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.0227273 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.0344828 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.0322581 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.05 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.0408163 |
| Compute gainv = inverse of the matrix of multibreed additive genetic covariances |
| Using algorithm to compute gainv directly; Elzo (1990a),JAS 68:1215-1228 |
| gainv | |||||
|---|---|---|---|---|---|
| 0.0585464 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
| 0.0125 | 0.043848 | -0.017241 | 0 | -0.025 | 0 |
| 0.0102041 | -0.017241 | 0.0446868 | 0 | 0 | -0.020408 |
| -0.016129 | 0 | 0 | 0.0322581 | 0 | 0 |
| -0.025 | -0.025 | 0 | 0 | 0.05 | 0 |
| -0.020408 | 0 | -0.020408 | 0 | 0 | 0.0408163 |
| gainv | |||||
|---|---|---|---|---|---|
| 0.059 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
| 0.013 | 0.044 | -0.017 | 0.000 | -0.025 | 0.000 |
| 0.010 | -0.017 | 0.045 | 0.000 | 0.000 | -0.020 |
| -0.016 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 |
| -0.025 | -0.025 | 0.000 | 0.000 | 0.050 | 0.000 |
| -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.041 |
| Compute lhs = left hand side of the MME |
| Add gainv to lhs |
| lhs | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.1756772 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
| 0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.1188851 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
| 0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0.0567921 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
| 0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0.1135843 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
| 0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.1141387 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
| 0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0.0615385 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
| 0.1756772 | 0.1188851 | 0.0567921 | 0.1135843 | 0.1141387 | 0.0615385 | 0.2590467 | 0.0408163 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0425532 |
| 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0408163 | 0.0789545 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
| 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0.0125 | 0.106348 | -0.017241 | 0 | -0.025 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0.0102041 | -0.017241 | 0.0754561 | 0 | 0 | -0.020408 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | -0.016129 | 0 | 0 | 0.0630273 | 0 | 0 |
| 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0.0307692 | -0.025 | -0.025 | 0 | 0 | 0.0807692 | 0 |
| 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0.0425532 | -0.020408 | 0 | -0.020408 | 0 | 0 | 0.0620929 |
| lhs | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.176 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 |
| 0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.119 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
| 0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.057 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 |
| 0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.114 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
| 0.072 | 0.052 | 0.021 | 0.041 | 0.072 | 0.000 | 0.114 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 |
| 0.124 | 0.031 | 0.093 | 0.062 | 0.000 | 0.124 | 0.062 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 |
| 0.176 | 0.119 | 0.057 | 0.114 | 0.114 | 0.062 | 0.259 | 0.041 | 0.000 | 0.031 | 0.031 | 0.031 | 0.043 |
| 0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.041 | 0.079 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
| 0.063 | 0.000 | 0.063 | 0.000 | 0.000 | 0.063 | 0.000 | 0.013 | 0.106 | -0.017 | 0.000 | -0.025 | 0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | 0.010 | -0.017 | 0.075 | 0.000 | 0.000 | -0.020 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | -0.016 | 0.000 | 0.000 | 0.063 | 0.000 | 0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | 0.031 | -0.025 | -0.025 | 0.000 | 0.000 | 0.081 | 0.000 |
| 0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | 0.043 | -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.062 |
| Compute rhs = right hand side of the MME |
| rhs |
|---|
| 52.187873 |
| 22.907943 |
| 29.27993 |
| 27.934861 |
| 20.967681 |
| 31.220192 |
| 48.858439 |
| 5.8979592 |
| 15.3125 |
| 7.8769231 |
| 8.0307692 |
| 8.9846154 |
| 6.0851064 |
| rhs |
|---|
| 52.19 |
| 22.91 |
| 29.28 |
| 27.93 |
| 20.97 |
| 31.22 |
| 48.86 |
| 5.90 |
| 15.31 |
| 7.88 |
| 8.03 |
| 8.98 |
| 6.09 |
| Compute ginvlhs = generalized inverse of the left hand side of the MME |
| ginvlhs | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 129.95302 | 286.65237 | -156.6994 | -14.62414 | 85.475647 | 44.477371 | -224.7828 | -15.76552 | -13.73103 | 4.034483 | -4.034483 | -24.74828 | 18.634483 |
| 286.65237 | 710.59472 | -423.9423 | -27.28147 | 167.04515 | 119.60722 | -520.1793 | -32.05862 | 11.682759 | 21.241379 | -9.241379 | -25.18793 | 55.841379 |
| -156.6994 | -423.9423 | 267.24300 | 12.657328 | -81.56950 | -75.12985 | 295.39655 | 16.293103 | -25.41379 | -17.20690 | 5.206897 | 0.439655 | -37.20690 |
| -14.62414 | -27.28147 | 12.657328 | 38.430603 | -3.242672 | -11.38147 | 8.012069 | 4.624138 | 5.348276 | -4.775862 | -5.224138 | -5.013793 | -0.075862 |
| 85.475647 | 167.04515 | -81.56950 | -3.242672 | 75.167996 | 10.307651 | -148.4034 | -12.50690 | -12.21379 | 6.793103 | 3.206897 | -27.36034 | 9.393103 |
| 44.477371 | 119.60722 | -75.12985 | -11.38147 | 10.307651 | 34.169720 | -76.37931 | -3.258621 | -1.517241 | -2.758621 | -7.241379 | 2.612069 | 9.241379 |
| -224.7828 | -520.1793 | 295.39655 | 8.012069 | -148.4034 | -76.37931 | 415.54138 | 13.282759 | 5.765517 | -18.51724 | -1.482759 | 29.524138 | -51.61724 |
| -15.76552 | -32.05862 | 16.293103 | 4.624138 | -12.50690 | -3.258621 | 13.282759 | 33.765517 | 2.731034 | 4.965517 | 13.034483 | 18.248276 | 19.365517 |
| -13.73103 | 11.682759 | -25.41379 | 5.348276 | -12.21379 | -1.517241 | 5.765517 | 2.731034 | 40.662069 | 15.931034 | 6.068966 | 21.696552 | 9.331034 |
| 4.034483 | 21.241379 | -17.20690 | -4.775862 | 6.793103 | -2.758621 | -18.51724 | 4.965517 | 15.931034 | 28.965517 | 11.034483 | 10.448276 | 16.965517 |
| -4.034483 | -9.241379 | 5.206897 | -5.224138 | 3.206897 | -7.241379 | -1.482759 | 13.034483 | 6.068966 | 11.034483 | 28.965517 | 9.551724 | 12.034483 |
| -24.74828 | -25.18793 | 0.439655 | -5.013793 | -27.36034 | 2.612069 | 29.524138 | 18.248276 | 21.696552 | 10.448276 | 9.551724 | 39.972414 | 14.348276 |
| 18.634483 | 55.841379 | -37.20690 | -0.075862 | 9.393103 | 9.241379 | -51.61724 | 19.365517 | 9.331034 | 16.965517 | 12.034483 | 14.348276 | 42.665517 |
| ginvlhs | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 129.95 | 286.65 | -156.7 | -14.62 | 85.476 | 44.477 | -224.8 | -15.77 | -13.73 | 4.034 | -4.034 | -24.75 | 18.634 |
| 286.65 | 710.59 | -423.9 | -27.28 | 167.05 | 119.61 | -520.2 | -32.06 | 11.683 | 21.241 | -9.241 | -25.19 | 55.841 |
| -156.7 | -423.9 | 267.24 | 12.657 | -81.57 | -75.13 | 295.40 | 16.293 | -25.41 | -17.21 | 5.207 | 0.440 | -37.21 |
| -14.62 | -27.28 | 12.657 | 38.431 | -3.243 | -11.38 | 8.012 | 4.624 | 5.348 | -4.776 | -5.224 | -5.014 | -0.076 |
| 85.476 | 167.05 | -81.57 | -3.243 | 75.168 | 10.308 | -148.4 | -12.51 | -12.21 | 6.793 | 3.207 | -27.36 | 9.393 |
| 44.477 | 119.61 | -75.13 | -11.38 | 10.308 | 34.170 | -76.38 | -3.259 | -1.517 | -2.759 | -7.241 | 2.612 | 9.241 |
| -224.8 | -520.2 | 295.40 | 8.012 | -148.4 | -76.38 | 415.54 | 13.283 | 5.766 | -18.52 | -1.483 | 29.524 | -51.62 |
| -15.77 | -32.06 | 16.293 | 4.624 | -12.51 | -3.259 | 13.283 | 33.766 | 2.731 | 4.966 | 13.034 | 18.248 | 19.366 |
| -13.73 | 11.683 | -25.41 | 5.348 | -12.21 | -1.517 | 5.766 | 2.731 | 40.662 | 15.931 | 6.069 | 21.697 | 9.331 |
| 4.034 | 21.241 | -17.21 | -4.776 | 6.793 | -2.759 | -18.52 | 4.966 | 15.931 | 28.966 | 11.034 | 10.448 | 16.966 |
| -4.034 | -9.241 | 5.207 | -5.224 | 3.207 | -7.241 | -1.483 | 13.034 | 6.069 | 11.034 | 28.966 | 9.552 | 12.034 |
| -24.75 | -25.19 | 0.440 | -5.014 | -27.36 | 2.612 | 29.524 | 18.248 | 21.697 | 10.448 | 9.552 | 39.972 | 14.348 |
| 18.634 | 55.841 | -37.21 | -0.076 | 9.393 | 9.241 | -51.62 | 19.366 | 9.331 | 16.966 | 12.034 | 14.348 | 42.666 |
| Compute gl = ginvlhs*lhs = matrix of expectations of solutions |
| gl | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.500 | 0.250 | 0.250 | -0.000 | 0.250 | 0.250 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 |
| 0.250 | 0.625 | -0.375 | -0.000 | 0.125 | 0.125 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
| 0.250 | -0.375 | 0.625 | -0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
| 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
| 0.250 | 0.125 | 0.125 | 0.000 | 0.625 | -0.375 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
| 0.250 | 0.125 | 0.125 | -0.000 | -0.375 | 0.625 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
| 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
| 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | 0.000 |
| 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 |
| -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 |
| Notice that lg = gl (i.e., lhs*ginvlhs = lhs*ginvlhs) |
| lg | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.500 | 0.250 | 0.250 | 0.000 | 0.250 | 0.250 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.250 | 0.625 | -0.375 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.250 | -0.375 | 0.625 | 0.000 | 0.125 | 0.125 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
| 0.000 | -0.000 | -0.000 | 1.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 0.250 | 0.125 | 0.125 | 0.000 | 0.625 | -0.375 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 |
| 0.250 | 0.125 | 0.125 | 0.000 | -0.375 | 0.625 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
| -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
| -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 1.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 |
| -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 1.000 |
| Verify that lgl = lhs (i.e., lhs*ginvlhs*lhs = lhs => generalized inverse is correct) |
| lgl | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.176 | 0.020 | 0.062 | 0.031 | 0.031 | 0.031 | 0.021 |
| 0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.119 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
| 0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.057 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 |
| 0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.114 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
| 0.072 | 0.052 | 0.021 | 0.041 | 0.072 | 0.000 | 0.114 | 0.020 | -0.000 | 0.000 | 0.000 | 0.031 | 0.021 |
| 0.124 | 0.031 | 0.093 | 0.062 | 0.000 | 0.124 | 0.062 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 |
| 0.176 | 0.119 | 0.057 | 0.114 | 0.114 | 0.062 | 0.259 | 0.041 | -0.000 | 0.031 | 0.031 | 0.031 | 0.043 |
| 0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.041 | 0.079 | 0.012 | 0.010 | -0.016 | -0.025 | -0.020 |
| 0.063 | 0.000 | 0.062 | 0.000 | 0.000 | 0.063 | 0.000 | 0.012 | 0.106 | -0.017 | 0.000 | -0.025 | 0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | 0.010 | -0.017 | 0.075 | 0.000 | 0.000 | -0.020 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | -0.016 | -0.000 | 0.000 | 0.063 | 0.000 | 0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | 0.031 | -0.025 | -0.025 | 0.000 | 0.000 | 0.081 | 0.000 |
| 0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | 0.043 | -0.020 | -0.000 | -0.020 | 0.000 | 0.000 | 0.062 |
| Compute ranklhs = rank of the MME = trace of ginvlhs*lhs |
| ranklhs |
|---|
| 11 |
| Compute sol = vector of solutions for the MME |
| sol |
|---|
| 137.37931 |
| 80.905172 |
| 56.474138 |
| 8.2155172 |
| 85.474138 |
| 51.905172 |
| -7.689655 |
| 0.6206897 |
| -0.758621 |
| -1.37931 |
| 1.3793103 |
| -0.068966 |
| -0.37931 |
| sol |
|---|
| 137.38 |
| 80.91 |
| 56.47 |
| 8.22 |
| 85.47 |
| 51.91 |
| -7.69 |
| 0.62 |
| -0.76 |
| -1.38 |
| 1.38 |
| -0.07 |
| -0.38 |
| Compute sesol = standard error of solutions |
| sesol |
|---|
| 11.40 |
| 26.66 |
| 16.35 |
| 6.20 |
| 8.67 |
| 5.85 |
| 20.38 |
| 5.81 |
| 6.38 |
| 5.38 |
| 5.38 |
| 6.32 |
| 6.53 |
| Computation of Additive, Nonadditive, and Total Genetic Predictions |
| Using matrix computations |
| Define ka = coefficient matrix of multiple trait additive genetic predictions deviated from B |
| Construct coefficients for fixed snp additive genomic effects in matrix ka |
| ka | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | -1 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0.75 | -0.75 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| ka | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.00 | 0.00 | 0.00 | 2.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.00 | 0.75 | -0.75 | 0.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| Compute kagl = ka*ginvlhs*lhs to check if functions in matrix ka are estimable |
| (kagl = ka if functions in ka are estimable) |
| kagl | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.00 | -0.00 | -0.00 | 2.00 | 1.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| -0.00 | 0.50 | -0.50 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 1.00 | -0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.00 | 0.75 | -0.75 | 0.00 | -0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| difkaglka | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 |
| Compute uaka = vector of multibreed additive genetic predictions |
| uaka |
|---|
| 9.67 |
| -0.76 |
| 3.15 |
| 5.91 |
| 4.46 |
| 2.56 |
| Compute vepuaka = matrix of variance of errors of additive genetic predictions |
| vepuaka | |||||
|---|---|---|---|---|---|
| 215.78 | 51.36 | 108.28 | 97.52 | 153.57 | 176.42 |
| 51.36 | 40.66 | 40.24 | 30.38 | 46.01 | 48.68 |
| 108.28 | 40.24 | 86.78 | 59.43 | 84.26 | 92.15 |
| 97.52 | 30.38 | 59.43 | 67.95 | 73.95 | 81.61 |
| 153.57 | 46.01 | 84.26 | 73.95 | 129.79 | 137.55 |
| 176.42 | 48.68 | 92.15 | 81.61 | 137.55 | 218.18 |
| Compute sepuaka = vector of standard errors of additive genetic predictions |
| sepuaka |
|---|
| 14.69 |
| 6.38 |
| 9.32 |
| 8.24 |
| 11.39 |
| 14.77 |
| Define kn = coefficient matrix of direct and maternal nonadditive genetic predictions |
| Assume that males will be mated to (1/2A 1/2B) females and viceversa |
| kn | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| kn | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Compute kngl = kn*ginvlhs*lhs to check if functions in matrix kn are estimable |
| (kngl = kn if functions in kn are estimable) |
| kngl | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| difknglkn | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
| Compute uakn = vector of multibreed nonadditive genetic predictions |
| uakn |
|---|
| 4.11 |
| 4.11 |
| 4.11 |
| 4.11 |
| 4.11 |
| 4.11 |
| Compute vepuakn = matrix of variance of errors of nonadditive genetic predictions |
| vepuakn | |||||
|---|---|---|---|---|---|
| 9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
| 9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
| 9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
| 9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
| 9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
| 9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
| Compute sepuakn = vector of standard errors of nonadditive genetic predictions |
| sepuakn |
|---|
| 3.10 |
| 3.10 |
| 3.10 |
| 3.10 |
| 3.10 |
| 3.10 |
| Define kt = coefficient matrix of total direct and maternal genetic predictions |
| Assume that males will be mated to (1/2A 1/2B) females and viceversa |
| Construct coefficients for fixed snp additive genomic effects in matrix ka |
| kt | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | -1 | 0.5 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0.75 | -0.75 | 0.5 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| kt | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.50 | 0.00 | 0.00 | 2.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.00 | 0.75 | -0.75 | 0.50 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| Compute ktgl = kt*ginvlhs*lhs to check if functions in matrix kt are estimable |
| (ktgl = kt if functions in kt are estimable) |
| ktgl | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.50 | -0.00 | -0.00 | 2.00 | 1.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.00 | 0.75 | -0.75 | 0.50 | -0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| difktglkt | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 |
| Compute uakt = vector of multibreed total genetic predictions |
| uakt |
|---|
| 13.78 |
| 3.35 |
| 7.25 |
| 10.01 |
| 8.56 |
| 6.67 |
| Compute vepuakt = matrix of variance of errors of total genetic predictions |
| vepuakt | |||||
|---|---|---|---|---|---|
| 206.09 | 54.00 | 99.87 | 88.89 | 145.04 | 169.38 |
| 54.00 | 55.62 | 44.16 | 34.07 | 49.81 | 53.96 |
| 99.87 | 44.16 | 79.65 | 52.08 | 77.02 | 86.38 |
| 88.89 | 34.07 | 52.08 | 60.37 | 66.48 | 75.62 |
| 145.04 | 49.81 | 77.02 | 66.48 | 122.43 | 131.67 |
| 169.38 | 53.96 | 86.38 | 75.62 | 131.67 | 213.78 |
| Compute sepuakt = vector of standard errors of total genetic predictions |
| sepuakt |
|---|
| 14.36 |
| 7.46 |
| 8.92 |
| 7.77 |
| 11.06 |
| 14.62 |