GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
INPUT DATA FILE |
Obs | animal | sire | dam | afa | afb | sfa | sfb | dfa | dfb | mgsfa | mgsfb | mgdfa | mgdfb | sex | bw | ww | snp01 | snp02 | snp03 | snp04 | snp05 | snp06 | snp07 | snp08 | snp09 | snp10 | snp11 | snp12 | snp13 | snp14 | snp15 | snp16 | snp17 | snp18 | snp19 | snp20 | snp21 | snp22 | snp23 | snp24 | snp25 | snp26 | snp27 | snp28 | snp29 | snp30 | snp31 | snp32 | snp33 | snp34 | snp35 | snp36 | snp37 | snp38 | snp39 | snp40 | snp41 | snp42 | snp43 | snp44 | snp45 | snp46 | snp47 | snp48 | snp49 | snp50 | snp51 | snp52 | snp53 | snp54 | snp55 | snp56 | snp57 | snp58 | snp59 | snp60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1.00 | 0.00 | 1 | 0 | 1.0 | 0.0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
2 | 2 | 0 | 0 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
3 | 3 | 0 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
4 | 4 | 1 | 0 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
5 | 5 | 1 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
Model_2_GEV_02_1T_1SNP_Fixed_PolEffect_October-30-2014_a November 1, 2014 |
GENETIC AND GENOMIC EVALUATION NOTES |
CHAPTER GEV_02 ALL MODELS |
MULTIPLE TRAIT GENETIC AND GENOMIC MODELS WITH: |
1) UNEQUAL RESIDUAL, ADDITIVE GENETIC, AND NONADDITIVE GENETIC COVARIANCE MATRICES ACROSS BREED GROUPS |
2) EQUAL RESIDUAL COVARIANCE MATRIX, UNEQUAL ADDITIVE AND NONADDITIVE GENETIC COVARIANCE MATRICES |
3) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, UNEQUAL NONADDITIVE GENETIC COVARIANCE MATRICES |
4) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, NO RANDOM NONADDITIVE GENETIC EFFECTS |
Mauricio A. Elzo, University of Florida, maelzo@ufl.edu |
Read input dataset (SAS file) |
datmat = matrix of input data |
datmat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | COL19 | COL20 | COL21 | COL22 | COL23 | COL24 | COL25 | COL26 | COL27 | COL28 | COL29 | COL30 | COL31 | COL32 | COL33 | COL34 | COL35 | COL36 | COL37 | COL38 | COL39 | COL40 | COL41 | COL42 | COL43 | COL44 | COL45 | COL46 | COL47 | COL48 | COL49 | COL50 | COL51 | COL52 | COL53 | COL54 | COL55 | COL56 | COL57 | COL58 | COL59 | COL60 | COL61 | COL62 | COL63 | COL64 | COL65 | COL66 | COL67 | COL68 | COL69 | COL70 | COL71 | COL72 | COL73 | COL74 | COL75 | COL76 | |
ROW1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
ROW2 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
ROW3 | 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
ROW4 | 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
ROW5 | 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
ROW6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
Read allele frequencies input dataset (SAS file) |
ntsnp |
---|
60 |
snpfreq | |
---|---|
1 | 0.1509 |
2 | 0.4252 |
3 | 0.1842 |
4 | 0.5314 |
5 | 0.6242 |
6 | 0.4292 |
7 | 0.2036 |
8 | 0.3518 |
9 | 0.5454 |
10 | 0.1048 |
11 | 0.3338 |
12 | 0.3284 |
13 | 0.006 |
14 | 0.502 |
15 | 0.2263 |
16 | 0.4706 |
17 | 0.0808 |
18 | 0.7216 |
19 | 0.026 |
20 | 0.3271 |
21 | 0.8718 |
22 | 0.0948 |
23 | 0.3825 |
24 | 0.0561 |
25 | 0.5401 |
26 | 0.6809 |
27 | 0.785 |
28 | 0.3758 |
29 | 0.0067 |
30 | 0.7891 |
31 | 0.0581 |
32 | 0.1429 |
33 | 0.6041 |
34 | 0.7196 |
35 | 0.9386 |
36 | 0.6335 |
37 | 0.4312 |
38 | 0.0033 |
39 | 0.2717 |
40 | 0.2203 |
41 | 0.5794 |
42 | 0.2023 |
43 | 0.5134 |
44 | 0.755 |
45 | 0.5648 |
46 | 0.518 |
47 | 0.3458 |
48 | 0.4806 |
49 | 0.3258 |
50 | 0.3117 |
51 | 0.7503 |
52 | 0.4132 |
53 | 0.743 |
54 | 0.6061 |
55 | 0.9933 |
56 | 0.7377 |
57 | 0.9399 |
58 | 0.4419 |
59 | 0.1295 |
60 | 0.0928 |
Enter Parameters for Current Run |
Enter restronsol = 1 to impose restrictions on solutions to solve the MME, else = 0 if not |
restronsol |
---|
0 |
No restrictions imposed on solutions to solve MME |
Enter nt = Number of traits |
nt |
---|
1 |
Enter nrec = Number of records |
nrec |
---|
6 |
Enter nfixpol = Number of fixed environmental and polygenic genetic effects |
nfixpol |
---|
6 |
Enter nanim = Number of animals |
nanim |
---|
6 |
Enter nsnp = number of marker locus genomic effects in the model |
nsnp |
---|
1 |
Enter 1 if random marker genomic effects in the model, else enter zero |
ranma |
---|
0 |
Enter 1 if random additive polygenic genetic effects in the model, else enter zero |
addpol |
---|
1 |
Enter 1 if random nonadditive polygenic genetic effects in the model, else enter zero |
nadpol |
---|
0 |
Enter 1 if zma values are [0,1,2] and 2 if zma values are [VanRaden(2009)] |
zmaval |
---|
1 |
Compute nf = Number of equations for fixed effects in the MME |
nf |
---|
6 |
Compute nma = Number of equations for marker locus additive genetic effects in the MME |
nma |
---|
1 |
Compute nga = Number of equations for random polygenic additive genetic effects in the MME |
nga |
---|
6 |
Compute ngn = Number of equations for random polygenic nonadditive genetic effects in the MME |
ngn |
---|
0 |
Compute neq = nf+nma+nga+ngn = total number of equations in the MME |
neq |
---|
13 |
Define pedigf = pedigree file with breed composition of animals, sires, and dams |
pedigf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
Construct xf = matrix of fixed and random effects |
Construct fixed effects in matrix xf |
Construct marker locus additive genomic effects in matrix xf |
xf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
Construct random polygenic additive genetic effects in matrix xf |
xf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
Make x = xf, i.e., use computed xf |
x | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0.5 | 0.5 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
Enter intrabreed and interbreed environmental variances |
veaa | vebb | veab |
---|---|---|
49 | 16 | 25 |
Compute vef = block-diagonal matrix of multibreed residual covariance matrices for individual animals |
pedigf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
vef | |||||
---|---|---|---|---|---|
49 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 32.5 | 0 | 0 | 0 |
0 | 0 | 0 | 32.5 | 0 | 0 |
0 | 0 | 0 | 0 | 32.5 | 0 |
0 | 0 | 0 | 0 | 0 | 47 |
Make r = vef |
r = block-diagonal matrix of residual covariance matrices for individual animals |
r | |||||
---|---|---|---|---|---|
49 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 32.5 | 0 | 0 | 0 |
0 | 0 | 0 | 32.5 | 0 | 0 |
0 | 0 | 0 | 0 | 32.5 | 0 |
0 | 0 | 0 | 0 | 0 | 47 |
invr = inverse of block-diagonal matrix of residual covariance matrices for individual animals |
invr | |||||
---|---|---|---|---|---|
0.0204082 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0625 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0307692 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0307692 | 0 | 0 |
0 | 0 | 0 | 0 | 0.0307692 | 0 |
0 | 0 | 0 | 0 | 0 | 0.0212766 |
Read yf = vector of records |
yf |
---|
289 |
245 |
256 |
261 |
292 |
286 |
Make y = yf, i.e., use read yf |
y |
---|
289 |
245 |
256 |
261 |
292 |
286 |
Compute xtinvr = x transpose times r |
xtinvr | |||||
---|---|---|---|---|---|
0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
0.0408163 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0425532 |
0.0204082 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0625 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0307692 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0307692 | 0 | 0 |
0 | 0 | 0 | 0 | 0.0307692 | 0 |
0 | 0 | 0 | 0 | 0 | 0.0212766 |
Compute xtinvrx = x transpose times r times x |
xtinvrx | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.1756772 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.1188851 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0.0567921 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0.1135843 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.1141387 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0.0615385 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
0.1756772 | 0.1188851 | 0.0567921 | 0.1135843 | 0.1141387 | 0.0615385 | 0.2590467 | 0.0408163 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0425532 |
0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0408163 | 0.0204082 | 0 | 0 | 0 | 0 | 0 |
0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0 | 0 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0 | 0 | 0.0307692 | 0 | 0 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0.0307692 | 0 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0.0307692 | 0 |
0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0.0425532 | 0 | 0 | 0 | 0 | 0 | 0.0212766 |
Enter intrabreed and interbreed additive genetic covariance matrices |
vaaa | vabb | vaab |
---|---|---|
36 | 44 | 22 |
Compute vaf = multibreed additive genetic covariance matrices for individual animals |
vaf | |||||
---|---|---|---|---|---|
36 | 0 | 0 | 0 | 0 | 0 |
0 | 44 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 43.5 |
Compute daf = block-diagonal matrix of residual additive genetic covariance matrices |
Recall: (Ga)-1 = (I - 1/2 P') (Block-diagonal Da)-1 (I - 1/2 P) for [dai]-1 blocks |
daf | |||||
---|---|---|---|---|---|
36 | 0 | 0 | 0 | 0 | 0 |
0 | 44 | 0 | 0 | 0 | 0 |
0 | 0 | 29 | 0 | 0 | 0 |
0 | 0 | 0 | 31 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 0 |
0 | 0 | 0 | 0 | 0 | 24.5 |
Make da = daf, i.e., use computed da |
Compute dainv = inverse of da |
dainv = inverse of block-diagonal matrix of residual additive genetic covariance matrices |
dainv | |||||
---|---|---|---|---|---|
0.0277778 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0227273 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0344828 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0322581 | 0 | 0 |
0 | 0 | 0 | 0 | 0.05 | 0 |
0 | 0 | 0 | 0 | 0 | 0.0408163 |
Compute gainv = inverse of the matrix of multibreed additive genetic covariances |
Using algorithm to compute gainv directly; Elzo (1990a),JAS 68:1215-1228 |
gainv | |||||
---|---|---|---|---|---|
0.0585464 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
0.0125 | 0.043848 | -0.017241 | 0 | -0.025 | 0 |
0.0102041 | -0.017241 | 0.0446868 | 0 | 0 | -0.020408 |
-0.016129 | 0 | 0 | 0.0322581 | 0 | 0 |
-0.025 | -0.025 | 0 | 0 | 0.05 | 0 |
-0.020408 | 0 | -0.020408 | 0 | 0 | 0.0408163 |
gainv | |||||
---|---|---|---|---|---|
0.059 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
0.013 | 0.044 | -0.017 | 0.000 | -0.025 | 0.000 |
0.010 | -0.017 | 0.045 | 0.000 | 0.000 | -0.020 |
-0.016 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 |
-0.025 | -0.025 | 0.000 | 0.000 | 0.050 | 0.000 |
-0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.041 |
Compute lhs = left hand side of the MME |
Add gainv to lhs |
lhs | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.1756772 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.1188851 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0.0567921 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0.1135843 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.1141387 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0.0615385 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
0.1756772 | 0.1188851 | 0.0567921 | 0.1135843 | 0.1141387 | 0.0615385 | 0.2590467 | 0.0408163 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0425532 |
0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0408163 | 0.0789545 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0.0125 | 0.106348 | -0.017241 | 0 | -0.025 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0.0102041 | -0.017241 | 0.0754561 | 0 | 0 | -0.020408 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | -0.016129 | 0 | 0 | 0.0630273 | 0 | 0 |
0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0.0307692 | -0.025 | -0.025 | 0 | 0 | 0.0807692 | 0 |
0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0.0425532 | -0.020408 | 0 | -0.020408 | 0 | 0 | 0.0620929 |
lhs | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.176 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 |
0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.119 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.057 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 |
0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.114 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
0.072 | 0.052 | 0.021 | 0.041 | 0.072 | 0.000 | 0.114 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 |
0.124 | 0.031 | 0.093 | 0.062 | 0.000 | 0.124 | 0.062 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 |
0.176 | 0.119 | 0.057 | 0.114 | 0.114 | 0.062 | 0.259 | 0.041 | 0.000 | 0.031 | 0.031 | 0.031 | 0.043 |
0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.041 | 0.079 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
0.063 | 0.000 | 0.063 | 0.000 | 0.000 | 0.063 | 0.000 | 0.013 | 0.106 | -0.017 | 0.000 | -0.025 | 0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | 0.010 | -0.017 | 0.075 | 0.000 | 0.000 | -0.020 |
0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | -0.016 | 0.000 | 0.000 | 0.063 | 0.000 | 0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | 0.031 | -0.025 | -0.025 | 0.000 | 0.000 | 0.081 | 0.000 |
0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | 0.043 | -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.062 |
Compute rhs = right hand side of the MME |
rhs |
---|
52.187873 |
22.907943 |
29.27993 |
27.934861 |
20.967681 |
31.220192 |
48.858439 |
5.8979592 |
15.3125 |
7.8769231 |
8.0307692 |
8.9846154 |
6.0851064 |
rhs |
---|
52.19 |
22.91 |
29.28 |
27.93 |
20.97 |
31.22 |
48.86 |
5.90 |
15.31 |
7.88 |
8.03 |
8.98 |
6.09 |
Compute ginvlhs = generalized inverse of the left hand side of the MME |
ginvlhs | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
129.95302 | 286.65237 | -156.6994 | -14.62414 | 85.475647 | 44.477371 | -224.7828 | -15.76552 | -13.73103 | 4.034483 | -4.034483 | -24.74828 | 18.634483 |
286.65237 | 710.59472 | -423.9423 | -27.28147 | 167.04515 | 119.60722 | -520.1793 | -32.05862 | 11.682759 | 21.241379 | -9.241379 | -25.18793 | 55.841379 |
-156.6994 | -423.9423 | 267.24300 | 12.657328 | -81.56950 | -75.12985 | 295.39655 | 16.293103 | -25.41379 | -17.20690 | 5.206897 | 0.439655 | -37.20690 |
-14.62414 | -27.28147 | 12.657328 | 38.430603 | -3.242672 | -11.38147 | 8.012069 | 4.624138 | 5.348276 | -4.775862 | -5.224138 | -5.013793 | -0.075862 |
85.475647 | 167.04515 | -81.56950 | -3.242672 | 75.167996 | 10.307651 | -148.4034 | -12.50690 | -12.21379 | 6.793103 | 3.206897 | -27.36034 | 9.393103 |
44.477371 | 119.60722 | -75.12985 | -11.38147 | 10.307651 | 34.169720 | -76.37931 | -3.258621 | -1.517241 | -2.758621 | -7.241379 | 2.612069 | 9.241379 |
-224.7828 | -520.1793 | 295.39655 | 8.012069 | -148.4034 | -76.37931 | 415.54138 | 13.282759 | 5.765517 | -18.51724 | -1.482759 | 29.524138 | -51.61724 |
-15.76552 | -32.05862 | 16.293103 | 4.624138 | -12.50690 | -3.258621 | 13.282759 | 33.765517 | 2.731034 | 4.965517 | 13.034483 | 18.248276 | 19.365517 |
-13.73103 | 11.682759 | -25.41379 | 5.348276 | -12.21379 | -1.517241 | 5.765517 | 2.731034 | 40.662069 | 15.931034 | 6.068966 | 21.696552 | 9.331034 |
4.034483 | 21.241379 | -17.20690 | -4.775862 | 6.793103 | -2.758621 | -18.51724 | 4.965517 | 15.931034 | 28.965517 | 11.034483 | 10.448276 | 16.965517 |
-4.034483 | -9.241379 | 5.206897 | -5.224138 | 3.206897 | -7.241379 | -1.482759 | 13.034483 | 6.068966 | 11.034483 | 28.965517 | 9.551724 | 12.034483 |
-24.74828 | -25.18793 | 0.439655 | -5.013793 | -27.36034 | 2.612069 | 29.524138 | 18.248276 | 21.696552 | 10.448276 | 9.551724 | 39.972414 | 14.348276 |
18.634483 | 55.841379 | -37.20690 | -0.075862 | 9.393103 | 9.241379 | -51.61724 | 19.365517 | 9.331034 | 16.965517 | 12.034483 | 14.348276 | 42.665517 |
ginvlhs | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
129.95 | 286.65 | -156.7 | -14.62 | 85.476 | 44.477 | -224.8 | -15.77 | -13.73 | 4.034 | -4.034 | -24.75 | 18.634 |
286.65 | 710.59 | -423.9 | -27.28 | 167.05 | 119.61 | -520.2 | -32.06 | 11.683 | 21.241 | -9.241 | -25.19 | 55.841 |
-156.7 | -423.9 | 267.24 | 12.657 | -81.57 | -75.13 | 295.40 | 16.293 | -25.41 | -17.21 | 5.207 | 0.440 | -37.21 |
-14.62 | -27.28 | 12.657 | 38.431 | -3.243 | -11.38 | 8.012 | 4.624 | 5.348 | -4.776 | -5.224 | -5.014 | -0.076 |
85.476 | 167.05 | -81.57 | -3.243 | 75.168 | 10.308 | -148.4 | -12.51 | -12.21 | 6.793 | 3.207 | -27.36 | 9.393 |
44.477 | 119.61 | -75.13 | -11.38 | 10.308 | 34.170 | -76.38 | -3.259 | -1.517 | -2.759 | -7.241 | 2.612 | 9.241 |
-224.8 | -520.2 | 295.40 | 8.012 | -148.4 | -76.38 | 415.54 | 13.283 | 5.766 | -18.52 | -1.483 | 29.524 | -51.62 |
-15.77 | -32.06 | 16.293 | 4.624 | -12.51 | -3.259 | 13.283 | 33.766 | 2.731 | 4.966 | 13.034 | 18.248 | 19.366 |
-13.73 | 11.683 | -25.41 | 5.348 | -12.21 | -1.517 | 5.766 | 2.731 | 40.662 | 15.931 | 6.069 | 21.697 | 9.331 |
4.034 | 21.241 | -17.21 | -4.776 | 6.793 | -2.759 | -18.52 | 4.966 | 15.931 | 28.966 | 11.034 | 10.448 | 16.966 |
-4.034 | -9.241 | 5.207 | -5.224 | 3.207 | -7.241 | -1.483 | 13.034 | 6.069 | 11.034 | 28.966 | 9.552 | 12.034 |
-24.75 | -25.19 | 0.440 | -5.014 | -27.36 | 2.612 | 29.524 | 18.248 | 21.697 | 10.448 | 9.552 | 39.972 | 14.348 |
18.634 | 55.841 | -37.21 | -0.076 | 9.393 | 9.241 | -51.62 | 19.366 | 9.331 | 16.966 | 12.034 | 14.348 | 42.666 |
Compute gl = ginvlhs*lhs = matrix of expectations of solutions |
gl | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.500 | 0.250 | 0.250 | -0.000 | 0.250 | 0.250 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 |
0.250 | 0.625 | -0.375 | -0.000 | 0.125 | 0.125 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
0.250 | -0.375 | 0.625 | -0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
0.250 | 0.125 | 0.125 | 0.000 | 0.625 | -0.375 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
0.250 | 0.125 | 0.125 | -0.000 | -0.375 | 0.625 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
-0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | 0.000 |
0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 |
-0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 |
Notice that lg = gl (i.e., lhs*ginvlhs = lhs*ginvlhs) |
lg | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.500 | 0.250 | 0.250 | 0.000 | 0.250 | 0.250 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.250 | 0.625 | -0.375 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.250 | -0.375 | 0.625 | 0.000 | 0.125 | 0.125 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
0.000 | -0.000 | -0.000 | 1.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.250 | 0.125 | 0.125 | 0.000 | 0.625 | -0.375 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 |
0.250 | 0.125 | 0.125 | 0.000 | -0.375 | 0.625 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
-0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
-0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
-0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 1.000 | -0.000 | -0.000 | -0.000 | -0.000 |
-0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 |
0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 |
-0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 1.000 |
Verify that lgl = lhs (i.e., lhs*ginvlhs*lhs = lhs => generalized inverse is correct) |
lgl | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.176 | 0.020 | 0.062 | 0.031 | 0.031 | 0.031 | 0.021 |
0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.119 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.057 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 |
0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.114 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
0.072 | 0.052 | 0.021 | 0.041 | 0.072 | 0.000 | 0.114 | 0.020 | -0.000 | 0.000 | 0.000 | 0.031 | 0.021 |
0.124 | 0.031 | 0.093 | 0.062 | 0.000 | 0.124 | 0.062 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 |
0.176 | 0.119 | 0.057 | 0.114 | 0.114 | 0.062 | 0.259 | 0.041 | -0.000 | 0.031 | 0.031 | 0.031 | 0.043 |
0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.041 | 0.079 | 0.012 | 0.010 | -0.016 | -0.025 | -0.020 |
0.063 | 0.000 | 0.062 | 0.000 | 0.000 | 0.063 | 0.000 | 0.012 | 0.106 | -0.017 | 0.000 | -0.025 | 0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | 0.010 | -0.017 | 0.075 | 0.000 | 0.000 | -0.020 |
0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | -0.016 | -0.000 | 0.000 | 0.063 | 0.000 | 0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | 0.031 | -0.025 | -0.025 | 0.000 | 0.000 | 0.081 | 0.000 |
0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | 0.043 | -0.020 | -0.000 | -0.020 | 0.000 | 0.000 | 0.062 |
Compute ranklhs = rank of the MME = trace of ginvlhs*lhs |
ranklhs |
---|
11 |
Compute sol = vector of solutions for the MME |
sol |
---|
137.37931 |
80.905172 |
56.474138 |
8.2155172 |
85.474138 |
51.905172 |
-7.689655 |
0.6206897 |
-0.758621 |
-1.37931 |
1.3793103 |
-0.068966 |
-0.37931 |
sol |
---|
137.38 |
80.91 |
56.47 |
8.22 |
85.47 |
51.91 |
-7.69 |
0.62 |
-0.76 |
-1.38 |
1.38 |
-0.07 |
-0.38 |
Compute sesol = standard error of solutions |
sesol |
---|
11.40 |
26.66 |
16.35 |
6.20 |
8.67 |
5.85 |
20.38 |
5.81 |
6.38 |
5.38 |
5.38 |
6.32 |
6.53 |
Computation of Additive, Nonadditive, and Total Genetic Predictions |
Using matrix computations |
Define ka = coefficient matrix of multiple trait additive genetic predictions deviated from B |
Construct coefficients for fixed snp additive genomic effects in matrix ka |
ka | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | -1 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0.5 | -0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0.5 | -0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0.5 | -0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0.75 | -0.75 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
ka | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 1.00 | -1.00 | 0.00 | 0.00 | 0.00 | 2.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
Compute kagl = ka*ginvlhs*lhs to check if functions in matrix ka are estimable |
(kagl = ka if functions in ka are estimable) |
kagl | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 1.00 | -1.00 | 0.00 | -0.00 | -0.00 | 2.00 | 1.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 |
0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
-0.00 | 0.50 | -0.50 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 1.00 | -0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.00 | -0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
difkaglka | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 |
0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
-0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 |
Compute uaka = vector of multibreed additive genetic predictions |
uaka |
---|
9.67 |
-0.76 |
3.15 |
5.91 |
4.46 |
2.56 |
Compute vepuaka = matrix of variance of errors of additive genetic predictions |
vepuaka | |||||
---|---|---|---|---|---|
215.78 | 51.36 | 108.28 | 97.52 | 153.57 | 176.42 |
51.36 | 40.66 | 40.24 | 30.38 | 46.01 | 48.68 |
108.28 | 40.24 | 86.78 | 59.43 | 84.26 | 92.15 |
97.52 | 30.38 | 59.43 | 67.95 | 73.95 | 81.61 |
153.57 | 46.01 | 84.26 | 73.95 | 129.79 | 137.55 |
176.42 | 48.68 | 92.15 | 81.61 | 137.55 | 218.18 |
Compute sepuaka = vector of standard errors of additive genetic predictions |
sepuaka |
---|
14.69 |
6.38 |
9.32 |
8.24 |
11.39 |
14.77 |
Define kn = coefficient matrix of direct and maternal nonadditive genetic predictions |
Assume that males will be mated to (1/2A 1/2B) females and viceversa |
kn | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
kn | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Compute kngl = kn*ginvlhs*lhs to check if functions in matrix kn are estimable |
(kngl = kn if functions in kn are estimable) |
kngl | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
difknglkn | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 |
Compute uakn = vector of multibreed nonadditive genetic predictions |
uakn |
---|
4.11 |
4.11 |
4.11 |
4.11 |
4.11 |
4.11 |
Compute vepuakn = matrix of variance of errors of nonadditive genetic predictions |
vepuakn | |||||
---|---|---|---|---|---|
9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
9.61 | 9.61 | 9.61 | 9.61 | 9.61 | 9.61 |
Compute sepuakn = vector of standard errors of nonadditive genetic predictions |
sepuakn |
---|
3.10 |
3.10 |
3.10 |
3.10 |
3.10 |
3.10 |
Define kt = coefficient matrix of total direct and maternal genetic predictions |
Assume that males will be mated to (1/2A 1/2B) females and viceversa |
Construct coefficients for fixed snp additive genomic effects in matrix ka |
kt | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | -1 | 0.5 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0.75 | -0.75 | 0.5 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
kt | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 1.00 | -1.00 | 0.50 | 0.00 | 0.00 | 2.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.50 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
Compute ktgl = kt*ginvlhs*lhs to check if functions in matrix kt are estimable |
(ktgl = kt if functions in kt are estimable) |
ktgl | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 1.00 | -1.00 | 0.50 | -0.00 | -0.00 | 2.00 | 1.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.50 | -0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
difktglkt | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 |
Compute uakt = vector of multibreed total genetic predictions |
uakt |
---|
13.78 |
3.35 |
7.25 |
10.01 |
8.56 |
6.67 |
Compute vepuakt = matrix of variance of errors of total genetic predictions |
vepuakt | |||||
---|---|---|---|---|---|
206.09 | 54.00 | 99.87 | 88.89 | 145.04 | 169.38 |
54.00 | 55.62 | 44.16 | 34.07 | 49.81 | 53.96 |
99.87 | 44.16 | 79.65 | 52.08 | 77.02 | 86.38 |
88.89 | 34.07 | 52.08 | 60.37 | 66.48 | 75.62 |
145.04 | 49.81 | 77.02 | 66.48 | 122.43 | 131.67 |
169.38 | 53.96 | 86.38 | 75.62 | 131.67 | 213.78 |
Compute sepuakt = vector of standard errors of total genetic predictions |
sepuakt |
---|
14.36 |
7.46 |
8.92 |
7.77 |
11.06 |
14.62 |