| GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
| INPUT DATA FILE |
| Obs | animal | sire | dam | afa | afb | sfa | sfb | dfa | dfb | mgsfa | mgsfb | mgdfa | mgdfb | sex | bw | ww | snp01 | snp02 | snp03 | snp04 | snp05 | snp06 | snp07 | snp08 | snp09 | snp10 | snp11 | snp12 | snp13 | snp14 | snp15 | snp16 | snp17 | snp18 | snp19 | snp20 | snp21 | snp22 | snp23 | snp24 | snp25 | snp26 | snp27 | snp28 | snp29 | snp30 | snp31 | snp32 | snp33 | snp34 | snp35 | snp36 | snp37 | snp38 | snp39 | snp40 | snp41 | snp42 | snp43 | snp44 | snp45 | snp46 | snp47 | snp48 | snp49 | snp50 | snp51 | snp52 | snp53 | snp54 | snp55 | snp56 | snp57 | snp58 | snp59 | snp60 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1.00 | 0.00 | 1 | 0 | 1.0 | 0.0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
| 2 | 2 | 0 | 0 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
| 3 | 3 | 0 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
| 4 | 4 | 1 | 0 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
| 5 | 5 | 1 | 2 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
| 6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
| GEV_02_GENETIC-GENOMIC MODELS_ALL GENOTYPES_October-30-2014_a November 1, 2014 |
| Model_3_GEV_02_1T_4SNP_Fixed_PolEffect_October-30-2014_a November 1, 2014 |
| GENETIC AND GENOMIC EVALUATION NOTES |
| CHAPTER GEV_02 ALL MODELS |
| MULTIPLE TRAIT GENETIC AND GENOMIC MODELS WITH: |
| 1) UNEQUAL RESIDUAL, ADDITIVE GENETIC, AND NONADDITIVE GENETIC COVARIANCE MATRICES ACROSS BREED GROUPS |
| 2) EQUAL RESIDUAL COVARIANCE MATRIX, UNEQUAL ADDITIVE AND NONADDITIVE GENETIC COVARIANCE MATRICES |
| 3) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, UNEQUAL NONADDITIVE GENETIC COVARIANCE MATRICES |
| 4) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, NO RANDOM NONADDITIVE GENETIC EFFECTS |
| Mauricio A. Elzo, University of Florida, maelzo@ufl.edu |
| Read input dataset (SAS file) |
| datmat = matrix of input data |
| datmat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | COL19 | COL20 | COL21 | COL22 | COL23 | COL24 | COL25 | COL26 | COL27 | COL28 | COL29 | COL30 | COL31 | COL32 | COL33 | COL34 | COL35 | COL36 | COL37 | COL38 | COL39 | COL40 | COL41 | COL42 | COL43 | COL44 | COL45 | COL46 | COL47 | COL48 | COL49 | COL50 | COL51 | COL52 | COL53 | COL54 | COL55 | COL56 | COL57 | COL58 | COL59 | COL60 | COL61 | COL62 | COL63 | COL64 | COL65 | COL66 | COL67 | COL68 | COL69 | COL70 | COL71 | COL72 | COL73 | COL74 | COL75 | COL76 | |
| ROW1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
| ROW2 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
| ROW3 | 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
| ROW4 | 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
| ROW5 | 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
| ROW6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
| Read allele frequencies input dataset (SAS file) |
| ntsnp |
|---|
| 60 |
| snpfreq | |
|---|---|
| 1 | 0.1509 |
| 2 | 0.4252 |
| 3 | 0.1842 |
| 4 | 0.5314 |
| 5 | 0.6242 |
| 6 | 0.4292 |
| 7 | 0.2036 |
| 8 | 0.3518 |
| 9 | 0.5454 |
| 10 | 0.1048 |
| 11 | 0.3338 |
| 12 | 0.3284 |
| 13 | 0.006 |
| 14 | 0.502 |
| 15 | 0.2263 |
| 16 | 0.4706 |
| 17 | 0.0808 |
| 18 | 0.7216 |
| 19 | 0.026 |
| 20 | 0.3271 |
| 21 | 0.8718 |
| 22 | 0.0948 |
| 23 | 0.3825 |
| 24 | 0.0561 |
| 25 | 0.5401 |
| 26 | 0.6809 |
| 27 | 0.785 |
| 28 | 0.3758 |
| 29 | 0.0067 |
| 30 | 0.7891 |
| 31 | 0.0581 |
| 32 | 0.1429 |
| 33 | 0.6041 |
| 34 | 0.7196 |
| 35 | 0.9386 |
| 36 | 0.6335 |
| 37 | 0.4312 |
| 38 | 0.0033 |
| 39 | 0.2717 |
| 40 | 0.2203 |
| 41 | 0.5794 |
| 42 | 0.2023 |
| 43 | 0.5134 |
| 44 | 0.755 |
| 45 | 0.5648 |
| 46 | 0.518 |
| 47 | 0.3458 |
| 48 | 0.4806 |
| 49 | 0.3258 |
| 50 | 0.3117 |
| 51 | 0.7503 |
| 52 | 0.4132 |
| 53 | 0.743 |
| 54 | 0.6061 |
| 55 | 0.9933 |
| 56 | 0.7377 |
| 57 | 0.9399 |
| 58 | 0.4419 |
| 59 | 0.1295 |
| 60 | 0.0928 |
| Enter Parameters for Current Run |
| Enter restronsol = 1 to impose restrictions on solutions to solve the MME, else = 0 if not |
| restronsol |
|---|
| 0 |
| No restrictions imposed on solutions to solve MME |
| Enter nt = Number of traits |
| nt |
|---|
| 1 |
| Enter nrec = Number of records |
| nrec |
|---|
| 6 |
| Enter nfixpol = Number of fixed environmental and polygenic genetic effects |
| nfixpol |
|---|
| 6 |
| Enter nanim = Number of animals |
| nanim |
|---|
| 6 |
| Enter nsnp = number of marker locus genomic effects in the model |
| nsnp |
|---|
| 4 |
| Enter 1 if random marker genomic effects in the model, else enter zero |
| ranma |
|---|
| 0 |
| Enter 1 if random additive polygenic genetic effects in the model, else enter zero |
| addpol |
|---|
| 1 |
| Enter 1 if random nonadditive polygenic genetic effects in the model, else enter zero |
| nadpol |
|---|
| 0 |
| Enter 1 if zma values are [0,1,2] and 2 if zma values are [VanRaden(2009)] |
| zmaval |
|---|
| 1 |
| Compute nf = Number of equations for fixed effects in the MME |
| nf |
|---|
| 6 |
| Compute nma = Number of equations for marker locus additive genetic effects in the MME |
| nma |
|---|
| 4 |
| Compute nga = Number of equations for random polygenic additive genetic effects in the MME |
| nga |
|---|
| 6 |
| Compute ngn = Number of equations for random polygenic nonadditive genetic effects in the MME |
| ngn |
|---|
| 0 |
| Compute neq = nf+nma+nga+ngn = total number of equations in the MME |
| neq |
|---|
| 16 |
| Define pedigf = pedigree file with breed composition of animals, sires, and dams |
| pedigf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
| Construct xf = matrix of fixed and random effects |
| Construct fixed effects in matrix xf |
| Construct marker locus additive genomic effects in matrix xf |
| xf | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | |
| ROW1 | 1 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW3 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW4 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW5 | 1 | 0.5 | 0.5 | 1 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW6 | 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 2 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| Construct random polygenic additive genetic effects in matrix xf |
| xf | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | |
| ROW1 | 1 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
| ROW2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| ROW3 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| ROW4 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| ROW5 | 1 | 0.5 | 0.5 | 1 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| ROW6 | 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 2 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| Make x = xf, i.e., use computed xf |
| x | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | |
| ROW1 | 1 | 1 | 0 | 0 | 1 | 0 | 2 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
| ROW2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| ROW3 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| ROW4 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| ROW5 | 1 | 0.5 | 0.5 | 1 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| ROW6 | 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 2 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| Enter intrabreed and interbreed environmental variances |
| veaa | vebb | veab |
|---|---|---|
| 49 | 16 | 25 |
| Compute vef = block-diagonal matrix of multibreed residual covariance matrices for individual animals |
| pedigf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
| vef | |||||
|---|---|---|---|---|---|
| 49 | 0 | 0 | 0 | 0 | 0 |
| 0 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 32.5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 32.5 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32.5 | 0 |
| 0 | 0 | 0 | 0 | 0 | 47 |
| Make r = vef |
| r = block-diagonal matrix of residual covariance matrices for individual animals |
| r | |||||
|---|---|---|---|---|---|
| 49 | 0 | 0 | 0 | 0 | 0 |
| 0 | 16 | 0 | 0 | 0 | 0 |
| 0 | 0 | 32.5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 32.5 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32.5 | 0 |
| 0 | 0 | 0 | 0 | 0 | 47 |
| invr = inverse of block-diagonal matrix of residual covariance matrices for individual animals |
| invr | |||||
|---|---|---|---|---|---|
| 0.0204082 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.0625 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.0307692 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.0307692 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.0307692 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.0212766 |
| Read yf = vector of records |
| yf |
|---|
| 289 |
| 245 |
| 256 |
| 261 |
| 292 |
| 286 |
| Make y = yf, i.e., use read yf |
| y |
|---|
| 289 |
| 245 |
| 256 |
| 261 |
| 292 |
| 286 |
| Compute xtinvr = x transpose times r |
| xtinvr | |||||
|---|---|---|---|---|---|
| 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
| 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
| 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
| 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
| 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
| 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
| 0.0408163 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0425532 |
| 0.0204082 | 0.0625 | 0.0615385 | 0.0615385 | 0.0615385 | 0.0212766 |
| 0.0204082 | 0.125 | 0 | 0 | 0 | 0.0425532 |
| 0.0408163 | 0 | 0 | 0 | 0.0307692 | 0.0425532 |
| 0.0204082 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.0625 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.0307692 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.0307692 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.0307692 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.0212766 |
| Compute xtinvrx = x transpose times r times x |
| xtinvrx | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | |
| ROW1 | 0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.1756772 | 0.2888001 | 0.1879614 | 0.1141387 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
| ROW2 | 0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.1188851 | 0.1286733 | 0.0523231 | 0.0881158 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
| ROW3 | 0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0.0567921 | 0.1601268 | 0.1356383 | 0.0260229 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
| ROW4 | 0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0.1135843 | 0.1952537 | 0.0212766 | 0.0520458 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
| ROW5 | 0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.1141387 | 0.1032232 | 0.0629614 | 0.1141387 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
| ROW6 | 0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0.0615385 | 0.1855769 | 0.125 | 0 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
| ROW7 | 0.1756772 | 0.1188851 | 0.0567921 | 0.1135843 | 0.1141387 | 0.0615385 | 0.2590467 | 0.2679849 | 0.1259227 | 0.1975083 | 0.0408163 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0425532 |
| ROW8 | 0.2888001 | 0.1286733 | 0.1601268 | 0.1952537 | 0.1032232 | 0.1855769 | 0.2679849 | 0.4734155 | 0.1879614 | 0.144908 | 0.0204082 | 0.0625 | 0.0615385 | 0.0615385 | 0.0615385 | 0.0212766 |
| ROW9 | 0.1879614 | 0.0523231 | 0.1356383 | 0.0212766 | 0.0629614 | 0.125 | 0.1259227 | 0.1879614 | 0.3555145 | 0.1259227 | 0.0204082 | 0.125 | 0 | 0 | 0 | 0.0425532 |
| ROW10 | 0.1141387 | 0.0881158 | 0.0260229 | 0.0520458 | 0.1141387 | 0 | 0.1975083 | 0.144908 | 0.1259227 | 0.1975083 | 0.0408163 | 0 | 0 | 0 | 0.0307692 | 0.0425532 |
| ROW11 | 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0408163 | 0.0204082 | 0.0204082 | 0.0408163 | 0.0204082 | 0 | 0 | 0 | 0 | 0 |
| ROW12 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0.0625 | 0.125 | 0 | 0 | 0.0625 | 0 | 0 | 0 | 0 |
| ROW13 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0.0615385 | 0 | 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 |
| ROW14 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0.0615385 | 0 | 0 | 0 | 0 | 0 | 0.0307692 | 0 | 0 |
| ROW15 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0.0307692 | 0.0615385 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0.0307692 | 0 |
| ROW16 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0.0425532 | 0.0212766 | 0.0425532 | 0.0425532 | 0 | 0 | 0 | 0 | 0 | 0.0212766 |
| Enter intrabreed and interbreed additive genetic covariance matrices |
| vaaa | vabb | vaab |
|---|---|---|
| 36 | 44 | 22 |
| Compute vaf = multibreed additive genetic covariance matrices for individual animals |
| vaf | |||||
|---|---|---|---|---|---|
| 36 | 0 | 0 | 0 | 0 | 0 |
| 0 | 44 | 0 | 0 | 0 | 0 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 0 |
| 0 | 0 | 0 | 0 | 0 | 43.5 |
| Compute daf = block-diagonal matrix of residual additive genetic covariance matrices |
| Recall: (Ga)-1 = (I - 1/2 P') (Block-diagonal Da)-1 (I - 1/2 P) for [dai]-1 blocks |
| daf | |||||
|---|---|---|---|---|---|
| 36 | 0 | 0 | 0 | 0 | 0 |
| 0 | 44 | 0 | 0 | 0 | 0 |
| 0 | 0 | 29 | 0 | 0 | 0 |
| 0 | 0 | 0 | 31 | 0 | 0 |
| 0 | 0 | 0 | 0 | 20 | 0 |
| 0 | 0 | 0 | 0 | 0 | 24.5 |
| Make da = daf, i.e., use computed da |
| Compute dainv = inverse of da |
| dainv = inverse of block-diagonal matrix of residual additive genetic covariance matrices |
| dainv | |||||
|---|---|---|---|---|---|
| 0.0277778 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.0227273 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.0344828 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.0322581 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.05 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.0408163 |
| Compute gainv = inverse of the matrix of multibreed additive genetic covariances |
| Using algorithm to compute gainv directly; Elzo (1990a),JAS 68:1215-1228 |
| gainv | |||||
|---|---|---|---|---|---|
| 0.0585464 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
| 0.0125 | 0.043848 | -0.017241 | 0 | -0.025 | 0 |
| 0.0102041 | -0.017241 | 0.0446868 | 0 | 0 | -0.020408 |
| -0.016129 | 0 | 0 | 0.0322581 | 0 | 0 |
| -0.025 | -0.025 | 0 | 0 | 0.05 | 0 |
| -0.020408 | 0 | -0.020408 | 0 | 0 | 0.0408163 |
| gainv | |||||
|---|---|---|---|---|---|
| 0.059 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
| 0.013 | 0.044 | -0.017 | 0.000 | -0.025 | 0.000 |
| 0.010 | -0.017 | 0.045 | 0.000 | 0.000 | -0.020 |
| -0.016 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 |
| -0.025 | -0.025 | 0.000 | 0.000 | 0.050 | 0.000 |
| -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.041 |
| Compute lhs = left hand side of the MME |
| Add gainv to lhs |
| lhs | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | |
| ROW1 | 0.1964925 | 0.0825195 | 0.113973 | 0.102946 | 0.072454 | 0.1240385 | 0.1756772 | 0.2888001 | 0.1879614 | 0.1141387 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 |
| ROW2 | 0.0825195 | 0.0554532 | 0.0270663 | 0.0541326 | 0.0517502 | 0.0307692 | 0.1188851 | 0.1286733 | 0.0523231 | 0.0881158 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 |
| ROW3 | 0.113973 | 0.0270663 | 0.0869067 | 0.0488134 | 0.0207038 | 0.0932692 | 0.0567921 | 0.1601268 | 0.1356383 | 0.0260229 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 |
| ROW4 | 0.102946 | 0.0541326 | 0.0488134 | 0.0976268 | 0.0414075 | 0.0615385 | 0.1135843 | 0.1952537 | 0.0212766 | 0.0520458 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 |
| ROW5 | 0.072454 | 0.0517502 | 0.0207038 | 0.0414075 | 0.072454 | 0 | 0.1141387 | 0.1032232 | 0.0629614 | 0.1141387 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 |
| ROW6 | 0.1240385 | 0.0307692 | 0.0932692 | 0.0615385 | 0 | 0.1240385 | 0.0615385 | 0.1855769 | 0.125 | 0 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 |
| ROW7 | 0.1756772 | 0.1188851 | 0.0567921 | 0.1135843 | 0.1141387 | 0.0615385 | 0.2590467 | 0.2679849 | 0.1259227 | 0.1975083 | 0.0408163 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0425532 |
| ROW8 | 0.2888001 | 0.1286733 | 0.1601268 | 0.1952537 | 0.1032232 | 0.1855769 | 0.2679849 | 0.4734155 | 0.1879614 | 0.144908 | 0.0204082 | 0.0625 | 0.0615385 | 0.0615385 | 0.0615385 | 0.0212766 |
| ROW9 | 0.1879614 | 0.0523231 | 0.1356383 | 0.0212766 | 0.0629614 | 0.125 | 0.1259227 | 0.1879614 | 0.3555145 | 0.1259227 | 0.0204082 | 0.125 | 0 | 0 | 0 | 0.0425532 |
| ROW10 | 0.1141387 | 0.0881158 | 0.0260229 | 0.0520458 | 0.1141387 | 0 | 0.1975083 | 0.144908 | 0.1259227 | 0.1975083 | 0.0408163 | 0 | 0 | 0 | 0.0307692 | 0.0425532 |
| ROW11 | 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0408163 | 0.0204082 | 0.0204082 | 0.0408163 | 0.0789545 | 0.0125 | 0.0102041 | -0.016129 | -0.025 | -0.020408 |
| ROW12 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0.0625 | 0.125 | 0 | 0.0125 | 0.106348 | -0.017241 | 0 | -0.025 | 0 |
| ROW13 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0.0615385 | 0 | 0 | 0.0102041 | -0.017241 | 0.0754561 | 0 | 0 | -0.020408 |
| ROW14 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0307692 | 0.0615385 | 0 | 0 | -0.016129 | 0 | 0 | 0.0630273 | 0 | 0 |
| ROW15 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0.0307692 | 0.0615385 | 0 | 0.0307692 | -0.025 | -0.025 | 0 | 0 | 0.0807692 | 0 |
| ROW16 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0.0425532 | 0.0212766 | 0.0425532 | 0.0425532 | -0.020408 | 0 | -0.020408 | 0 | 0 | 0.0620929 |
| lhs | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.176 | 0.289 | 0.188 | 0.114 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 |
| 0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.119 | 0.129 | 0.052 | 0.088 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
| 0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.057 | 0.160 | 0.136 | 0.026 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 |
| 0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.114 | 0.195 | 0.021 | 0.052 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
| 0.072 | 0.052 | 0.021 | 0.041 | 0.072 | 0.000 | 0.114 | 0.103 | 0.063 | 0.114 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 |
| 0.124 | 0.031 | 0.093 | 0.062 | 0.000 | 0.124 | 0.062 | 0.186 | 0.125 | 0.000 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 |
| 0.176 | 0.119 | 0.057 | 0.114 | 0.114 | 0.062 | 0.259 | 0.268 | 0.126 | 0.198 | 0.041 | 0.000 | 0.031 | 0.031 | 0.031 | 0.043 |
| 0.289 | 0.129 | 0.160 | 0.195 | 0.103 | 0.186 | 0.268 | 0.473 | 0.188 | 0.145 | 0.020 | 0.063 | 0.062 | 0.062 | 0.062 | 0.021 |
| 0.188 | 0.052 | 0.136 | 0.021 | 0.063 | 0.125 | 0.126 | 0.188 | 0.356 | 0.126 | 0.020 | 0.125 | 0.000 | 0.000 | 0.000 | 0.043 |
| 0.114 | 0.088 | 0.026 | 0.052 | 0.114 | 0.000 | 0.198 | 0.145 | 0.126 | 0.198 | 0.041 | 0.000 | 0.000 | 0.000 | 0.031 | 0.043 |
| 0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.041 | 0.020 | 0.020 | 0.041 | 0.079 | 0.013 | 0.010 | -0.016 | -0.025 | -0.020 |
| 0.063 | 0.000 | 0.063 | 0.000 | 0.000 | 0.063 | 0.000 | 0.063 | 0.125 | 0.000 | 0.013 | 0.106 | -0.017 | 0.000 | -0.025 | 0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | 0.062 | 0.000 | 0.000 | 0.010 | -0.017 | 0.075 | 0.000 | 0.000 | -0.020 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | 0.062 | 0.000 | 0.000 | -0.016 | 0.000 | 0.000 | 0.063 | 0.000 | 0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | 0.031 | 0.062 | 0.000 | 0.031 | -0.025 | -0.025 | 0.000 | 0.000 | 0.081 | 0.000 |
| 0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | 0.043 | 0.021 | 0.043 | 0.043 | -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.062 |
| Compute rhs = right hand side of the MME |
| rhs |
|---|
| 52.187873 |
| 22.907943 |
| 29.27993 |
| 27.934861 |
| 20.967681 |
| 31.220192 |
| 48.858439 |
| 77.080181 |
| 48.693172 |
| 32.950747 |
| 5.8979592 |
| 15.3125 |
| 7.8769231 |
| 8.0307692 |
| 8.9846154 |
| 6.0851064 |
| rhs |
|---|
| 52.19 |
| 22.91 |
| 29.28 |
| 27.93 |
| 20.97 |
| 31.22 |
| 48.86 |
| 77.08 |
| 48.69 |
| 32.95 |
| 5.90 |
| 15.31 |
| 7.88 |
| 8.03 |
| 8.98 |
| 6.09 |
| Compute ginvlhs = generalized inverse of the left hand side of the MME |
| ginvlhs | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | |
| ROW1 | 22.910965 | 13.629121 | 9.281844 | -54.23056 | 13.656252 | 9.254713 | -17.80326 | 13.741900 | -21.64584 | 9.339157 | -7.057636 | -8.227353 | 1.201792 | -1.352630 | -9.611768 | 6.464885 |
| ROW2 | 13.629121 | 14.830222 | -1.201101 | -39.30834 | -0.260346 | 13.889467 | 0.296831 | 3.684393 | -16.70031 | 4.860434 | -6.558017 | 3.368008 | 1.486082 | -2.991668 | 1.526504 | 3.426497 |
| ROW3 | 9.281844 | -1.201101 | 10.482945 | -14.92222 | 13.916598 | -4.634754 | -18.10009 | 10.057507 | -4.945532 | 4.478723 | -0.499618 | -11.59536 | -0.284290 | 1.639039 | -11.13827 | 3.038388 |
| ROW4 | -54.23056 | -39.30834 | -14.92222 | 140.18302 | -24.54786 | -29.68270 | 33.226695 | -25.89092 | 56.102811 | -22.10434 | 14.234902 | 5.984468 | -10.74764 | -1.531689 | 8.685104 | -21.69562 |
| ROW5 | 13.656252 | -0.260346 | 13.916598 | -24.54786 | 23.015216 | -9.358964 | -25.58774 | 14.175443 | -10.80651 | 9.961749 | -4.729876 | -8.983007 | 3.878154 | 3.993354 | -16.31175 | 3.492086 |
| ROW6 | 9.254713 | 13.889467 | -4.634754 | -29.68270 | -9.358964 | 18.613677 | 7.784488 | -0.433543 | -10.83933 | -0.622592 | -2.327760 | 0.755654 | -2.676363 | -5.345983 | 6.699981 | 2.972799 |
| ROW7 | -17.80326 | 0.296831 | -18.10009 | 33.226695 | -25.58774 | 7.784488 | 33.551353 | -17.53425 | 13.129684 | -8.946570 | -1.556850 | 14.385358 | -4.768686 | -6.641928 | 15.220120 | -11.28096 |
| ROW8 | 13.741900 | 3.684393 | 10.057507 | -25.89092 | 14.175443 | -0.433543 | -17.53425 | 12.754019 | -12.07333 | 5.902258 | -4.381919 | -9.892226 | -1.804999 | -2.225727 | -13.09378 | 2.903224 |
| ROW9 | -21.64584 | -16.70031 | -4.945532 | 56.102811 | -10.80651 | -10.83933 | 13.129684 | -12.07333 | 28.845306 | -9.027928 | 5.767949 | -5.851392 | -6.183587 | 0.608168 | 2.723642 | -12.35517 |
| ROW10 | 9.339157 | 4.860434 | 4.478723 | -22.10434 | 9.961749 | -0.622592 | -8.946570 | 5.902258 | -9.027928 | 7.206913 | -6.846159 | -0.957891 | 2.997207 | 1.108939 | -6.960684 | -0.367563 |
| ROW11 | -7.057636 | -6.558017 | -0.499618 | 14.234902 | -4.729876 | -2.327760 | -1.556850 | -4.381919 | 5.767949 | -6.846159 | 33.765517 | 2.731034 | 4.965517 | 13.034483 | 18.248276 | 19.365517 |
| ROW12 | -8.227353 | 3.368008 | -11.59536 | 5.984468 | -8.983007 | 0.755654 | 14.385358 | -9.892226 | -5.851392 | -0.957891 | 2.731034 | 40.662069 | 15.931034 | 6.068966 | 21.696552 | 9.331034 |
| ROW13 | 1.201792 | 1.486082 | -0.284290 | -10.74764 | 3.878154 | -2.676363 | -4.768686 | -1.804999 | -6.183587 | 2.997207 | 4.965517 | 15.931034 | 28.965517 | 11.034483 | 10.448276 | 16.965517 |
| ROW14 | -1.352630 | -2.991668 | 1.639039 | -1.531689 | 3.993354 | -5.345983 | -6.641928 | -2.225727 | 0.608168 | 1.108939 | 13.034483 | 6.068966 | 11.034483 | 28.965517 | 9.551724 | 12.034483 |
| ROW15 | -9.611768 | 1.526504 | -11.13827 | 8.685104 | -16.31175 | 6.699981 | 15.220120 | -13.09378 | 2.723642 | -6.960684 | 18.248276 | 21.696552 | 10.448276 | 9.551724 | 39.972414 | 14.348276 |
| ROW16 | 6.464885 | 3.426497 | 3.038388 | -21.69562 | 3.492086 | 2.972799 | -11.28096 | 2.903224 | -12.35517 | -0.367563 | 19.365517 | 9.331034 | 16.965517 | 12.034483 | 14.348276 | 42.665517 |
| ginvlhs | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 22.911 | 13.629 | 9.282 | -54.23 | 13.656 | 9.255 | -17.80 | 13.742 | -21.65 | 9.339 | -7.058 | -8.227 | 1.202 | -1.353 | -9.612 | 6.465 |
| 13.629 | 14.830 | -1.201 | -39.31 | -0.260 | 13.889 | 0.297 | 3.684 | -16.70 | 4.860 | -6.558 | 3.368 | 1.486 | -2.992 | 1.527 | 3.426 |
| 9.282 | -1.201 | 10.483 | -14.92 | 13.917 | -4.635 | -18.10 | 10.058 | -4.946 | 4.479 | -0.500 | -11.60 | -0.284 | 1.639 | -11.14 | 3.038 |
| -54.23 | -39.31 | -14.92 | 140.18 | -24.55 | -29.68 | 33.227 | -25.89 | 56.103 | -22.10 | 14.235 | 5.984 | -10.75 | -1.532 | 8.685 | -21.70 |
| 13.656 | -0.260 | 13.917 | -24.55 | 23.015 | -9.359 | -25.59 | 14.175 | -10.81 | 9.962 | -4.730 | -8.983 | 3.878 | 3.993 | -16.31 | 3.492 |
| 9.255 | 13.889 | -4.635 | -29.68 | -9.359 | 18.614 | 7.784 | -0.434 | -10.84 | -0.623 | -2.328 | 0.756 | -2.676 | -5.346 | 6.700 | 2.973 |
| -17.80 | 0.297 | -18.10 | 33.227 | -25.59 | 7.784 | 33.551 | -17.53 | 13.130 | -8.947 | -1.557 | 14.385 | -4.769 | -6.642 | 15.220 | -11.28 |
| 13.742 | 3.684 | 10.058 | -25.89 | 14.175 | -0.434 | -17.53 | 12.754 | -12.07 | 5.902 | -4.382 | -9.892 | -1.805 | -2.226 | -13.09 | 2.903 |
| -21.65 | -16.70 | -4.946 | 56.103 | -10.81 | -10.84 | 13.130 | -12.07 | 28.845 | -9.028 | 5.768 | -5.851 | -6.184 | 0.608 | 2.724 | -12.36 |
| 9.339 | 4.860 | 4.479 | -22.10 | 9.962 | -0.623 | -8.947 | 5.902 | -9.028 | 7.207 | -6.846 | -0.958 | 2.997 | 1.109 | -6.961 | -0.368 |
| -7.058 | -6.558 | -0.500 | 14.235 | -4.730 | -2.328 | -1.557 | -4.382 | 5.768 | -6.846 | 33.766 | 2.731 | 4.966 | 13.034 | 18.248 | 19.366 |
| -8.227 | 3.368 | -11.60 | 5.984 | -8.983 | 0.756 | 14.385 | -9.892 | -5.851 | -0.958 | 2.731 | 40.662 | 15.931 | 6.069 | 21.697 | 9.331 |
| 1.202 | 1.486 | -0.284 | -10.75 | 3.878 | -2.676 | -4.769 | -1.805 | -6.184 | 2.997 | 4.966 | 15.931 | 28.966 | 11.034 | 10.448 | 16.966 |
| -1.353 | -2.992 | 1.639 | -1.532 | 3.993 | -5.346 | -6.642 | -2.226 | 0.608 | 1.109 | 13.034 | 6.069 | 11.034 | 28.966 | 9.552 | 12.034 |
| -9.612 | 1.527 | -11.14 | 8.685 | -16.31 | 6.700 | 15.220 | -13.09 | 2.724 | -6.961 | 18.248 | 21.697 | 10.448 | 9.552 | 39.972 | 14.348 |
| 6.465 | 3.426 | 3.038 | -21.70 | 3.492 | 2.973 | -11.28 | 2.903 | -12.36 | -0.368 | 19.366 | 9.331 | 16.966 | 12.034 | 14.348 | 42.666 |
| Compute gl = ginvlhs*lhs = matrix of expectations of solutions |
| gl | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.256 | 0.104 | 0.152 | -0.155 | 0.089 | 0.168 | 0.017 | 0.293 | 0.066 | 0.079 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 |
| 0.104 | 0.186 | -0.081 | -0.159 | -0.013 | 0.117 | 0.249 | 0.068 | -0.104 | 0.130 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| 0.152 | -0.081 | 0.233 | 0.003 | 0.102 | 0.050 | -0.232 | 0.225 | 0.170 | -0.051 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| -0.155 | -0.159 | 0.003 | 0.824 | -0.021 | -0.134 | 0.161 | 0.191 | 0.047 | -0.113 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 |
| 0.089 | -0.013 | 0.102 | -0.021 | 0.390 | -0.302 | -0.106 | 0.148 | -0.018 | 0.308 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| 0.168 | 0.117 | 0.050 | -0.134 | -0.302 | 0.469 | 0.123 | 0.145 | 0.084 | -0.229 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| 0.017 | 0.249 | -0.232 | 0.161 | -0.106 | 0.123 | 0.665 | 0.013 | 0.040 | 0.229 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| 0.293 | 0.068 | 0.225 | 0.191 | 0.148 | 0.145 | 0.013 | 0.606 | -0.135 | -0.002 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| 0.066 | -0.104 | 0.170 | 0.047 | -0.018 | 0.084 | 0.040 | -0.135 | 0.908 | 0.102 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| 0.079 | 0.130 | -0.051 | -0.113 | 0.308 | -0.229 | 0.229 | -0.002 | 0.102 | 0.463 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
| -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | 0.000 | -0.000 |
| 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 |
| -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 | -0.000 |
| 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 1.000 |
| Notice that lg = gl (i.e., lhs*ginvlhs = lhs*ginvlhs) |
| lg | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.256 | 0.104 | 0.152 | -0.155 | 0.089 | 0.168 | 0.017 | 0.293 | 0.066 | 0.079 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 |
| 0.104 | 0.186 | -0.081 | -0.159 | -0.013 | 0.117 | 0.249 | 0.068 | -0.104 | 0.130 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 |
| 0.152 | -0.081 | 0.233 | 0.003 | 0.102 | 0.050 | -0.232 | 0.225 | 0.170 | -0.051 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| -0.155 | -0.159 | 0.003 | 0.824 | -0.021 | -0.134 | 0.161 | 0.191 | 0.047 | -0.113 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| 0.089 | -0.013 | 0.102 | -0.021 | 0.390 | -0.302 | -0.106 | 0.148 | -0.018 | 0.308 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 |
| 0.168 | 0.117 | 0.050 | -0.134 | -0.302 | 0.469 | 0.123 | 0.145 | 0.084 | -0.229 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
| 0.017 | 0.249 | -0.232 | 0.161 | -0.106 | 0.123 | 0.665 | 0.013 | 0.040 | 0.229 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 |
| 0.293 | 0.068 | 0.225 | 0.191 | 0.148 | 0.145 | 0.013 | 0.606 | -0.135 | -0.002 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 |
| 0.066 | -0.104 | 0.170 | 0.047 | -0.018 | 0.084 | 0.040 | -0.135 | 0.908 | 0.102 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
| 0.079 | 0.130 | -0.051 | -0.113 | 0.308 | -0.229 | 0.229 | -0.002 | 0.102 | 0.463 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 |
| 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 1.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 1.000 | 0.000 | -0.000 | 0.000 | 0.000 |
| -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 | -0.000 |
| 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | -0.000 |
| 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 1.000 | -0.000 |
| -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 1.000 |
| Verify that lgl = lhs (i.e., lhs*ginvlhs*lhs = lhs => generalized inverse is correct) |
| lgl | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.196 | 0.083 | 0.114 | 0.103 | 0.072 | 0.124 | 0.176 | 0.289 | 0.188 | 0.114 | 0.020 | 0.062 | 0.031 | 0.031 | 0.031 | 0.021 |
| 0.083 | 0.055 | 0.027 | 0.054 | 0.052 | 0.031 | 0.119 | 0.129 | 0.052 | 0.088 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 |
| 0.114 | 0.027 | 0.087 | 0.049 | 0.021 | 0.093 | 0.057 | 0.160 | 0.136 | 0.026 | -0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 |
| 0.103 | 0.054 | 0.049 | 0.098 | 0.041 | 0.062 | 0.114 | 0.195 | 0.021 | 0.052 | -0.000 | -0.000 | 0.031 | 0.031 | 0.031 | 0.011 |
| 0.072 | 0.052 | 0.021 | 0.041 | 0.072 | 0.000 | 0.114 | 0.103 | 0.063 | 0.114 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 |
| 0.124 | 0.031 | 0.093 | 0.062 | 0.000 | 0.124 | 0.062 | 0.186 | 0.125 | 0.000 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 |
| 0.176 | 0.119 | 0.057 | 0.114 | 0.114 | 0.062 | 0.259 | 0.268 | 0.126 | 0.198 | 0.041 | 0.000 | 0.031 | 0.031 | 0.031 | 0.043 |
| 0.289 | 0.129 | 0.160 | 0.195 | 0.103 | 0.186 | 0.268 | 0.473 | 0.188 | 0.145 | 0.020 | 0.063 | 0.062 | 0.062 | 0.062 | 0.021 |
| 0.188 | 0.052 | 0.136 | 0.021 | 0.063 | 0.125 | 0.126 | 0.188 | 0.356 | 0.126 | 0.020 | 0.125 | -0.000 | 0.000 | 0.000 | 0.043 |
| 0.114 | 0.088 | 0.026 | 0.052 | 0.114 | 0.000 | 0.198 | 0.145 | 0.126 | 0.198 | 0.041 | 0.000 | 0.000 | 0.000 | 0.031 | 0.043 |
| 0.020 | 0.020 | -0.000 | -0.000 | 0.020 | -0.000 | 0.041 | 0.020 | 0.020 | 0.041 | 0.079 | 0.012 | 0.010 | -0.016 | -0.025 | -0.020 |
| 0.063 | 0.000 | 0.063 | 0.000 | 0.000 | 0.063 | 0.000 | 0.063 | 0.125 | 0.000 | 0.012 | 0.106 | -0.017 | 0.000 | -0.025 | 0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | 0.062 | -0.000 | 0.000 | 0.010 | -0.017 | 0.075 | 0.000 | 0.000 | -0.020 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.031 | 0.062 | -0.000 | 0.000 | -0.016 | -0.000 | 0.000 | 0.063 | 0.000 | -0.000 |
| 0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | 0.031 | 0.062 | -0.000 | 0.031 | -0.025 | -0.025 | 0.000 | 0.000 | 0.081 | 0.000 |
| 0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | 0.043 | 0.021 | 0.043 | 0.043 | -0.020 | 0.000 | -0.020 | -0.000 | 0.000 | 0.062 |
| Compute ranklhs = rank of the MME = trace of ginvlhs*lhs |
| ranklhs |
|---|
| 11 |
| Compute sol = vector of solutions for the MME |
| sol |
|---|
| 67.106753 |
| 26.536581 |
| 40.570173 |
| -37.14618 |
| 35.225517 |
| 31.881237 |
| 2.9626607 |
| 80.071076 |
| 13.064691 |
| 30.224686 |
| 0.6206897 |
| -0.758621 |
| -1.37931 |
| 1.3793103 |
| -0.068966 |
| -0.37931 |
| sol |
|---|
| 67.11 |
| 26.54 |
| 40.57 |
| -37.15 |
| 35.23 |
| 31.88 |
| 2.96 |
| 80.07 |
| 13.06 |
| 30.22 |
| 0.62 |
| -0.76 |
| -1.38 |
| 1.38 |
| -0.07 |
| -0.38 |
| Compute sesol = standard error of solutions |
| sesol |
|---|
| 4.79 |
| 3.85 |
| 3.24 |
| 11.84 |
| 4.80 |
| 4.31 |
| 5.79 |
| 3.57 |
| 5.37 |
| 2.68 |
| 5.81 |
| 6.38 |
| 5.38 |
| 5.38 |
| 6.32 |
| 6.53 |
| Computation of Additive, Nonadditive, and Total Genetic Predictions |
| Using matrix computations |
| Define ka = coefficient matrix of multiple trait additive genetic predictions deviated from B |
| Construct coefficients for fixed snp additive genomic effects in matrix ka |
| ka | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | |
| ROW1 | 0 | 1 | -1 | 0 | 0 | 0 | 2 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
| ROW2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| ROW3 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| ROW4 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| ROW5 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| ROW6 | 0 | 0.75 | -0.75 | 0 | 0 | 0 | 2 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| ka | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.00 | 0.00 | 0.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 2.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 2.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.00 | 0.75 | -0.75 | 0.00 | 0.00 | 0.00 | 2.00 | 1.00 | 2.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| Compute kagl = ka*ginvlhs*lhs to check if functions in matrix ka are estimable |
| (kagl = ka if functions in ka are estimable) |
| kagl | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.50 | 0.99 | -0.49 | 0.17 | 0.42 | 0.08 | 2.32 | 0.33 | 0.78 | 1.66 | 1.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.42 | -0.14 | 0.56 | 0.29 | 0.11 | 0.31 | 0.09 | 0.34 | 1.68 | 0.20 | 0.00 | 1.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.58 | 0.52 | 0.06 | 0.46 | 0.13 | 0.45 | 0.93 | 1.15 | -0.37 | 0.31 | 0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 |
| 0.58 | 0.52 | 0.06 | 0.46 | 0.13 | 0.45 | 0.93 | 1.15 | -0.37 | 0.31 | 0.00 | -0.00 | 0.00 | 1.00 | -0.00 | 0.00 |
| 0.66 | 0.65 | 0.01 | 0.35 | 0.44 | 0.22 | 1.16 | 1.14 | -0.26 | 0.78 | 0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.58 | 0.82 | -0.24 | 0.26 | 0.43 | 0.15 | 2.24 | 0.24 | 1.76 | 1.72 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 1.00 |
| difkaglka | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.50 | -0.01 | 0.51 | 0.17 | 0.42 | 0.08 | 0.32 | -0.67 | -0.22 | -0.34 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.42 | -0.14 | 0.56 | 0.29 | 0.11 | 0.31 | 0.09 | -0.66 | -0.32 | 0.20 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.58 | 0.02 | 0.56 | 0.46 | 0.13 | 0.45 | -0.07 | -0.85 | -0.37 | 0.31 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.58 | 0.02 | 0.56 | 0.46 | 0.13 | 0.45 | -0.07 | -0.85 | -0.37 | 0.31 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.66 | 0.15 | 0.51 | 0.35 | 0.44 | 0.22 | 0.16 | -0.86 | -0.26 | -0.22 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.58 | 0.07 | 0.51 | 0.26 | 0.43 | 0.15 | 0.24 | -0.76 | -0.24 | -0.28 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| Compute uaka = vector of multibreed additive genetic predictions |
| uaka |
|---|
| 146.10 |
| 105.44 |
| 154.71 |
| 157.47 |
| 186.24 |
| 161.67 |
| Compute vepuaka = matrix of variance of errors of additive genetic predictions |
| vepuaka | |||||
|---|---|---|---|---|---|
| 136.18 | 33.44 | 10.72 | 11.23 | 39.50 | 119.61 |
| 33.44 | 77.31 | -25.16 | -21.86 | -25.98 | 54.58 |
| 10.72 | -25.16 | 40.99 | 17.14 | 31.38 | 2.39 |
| 11.23 | -21.86 | 17.14 | 29.16 | 22.68 | -1.70 |
| 39.50 | -25.98 | 31.38 | 22.68 | 57.10 | 18.81 |
| 119.61 | 54.58 | 2.39 | -1.70 | 18.81 | 137.73 |
| Compute sepuaka = vector of standard errors of additive genetic predictions |
| sepuaka |
|---|
| 11.67 |
| 8.79 |
| 6.40 |
| 5.40 |
| 7.56 |
| 11.74 |
| Define kn = coefficient matrix of direct and maternal nonadditive genetic predictions |
| Assume that males will be mated to (1/2A 1/2B) females and viceversa |
| kn | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | |
| ROW1 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW2 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW3 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW4 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW5 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ROW6 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| kn | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Compute kngl = kn*ginvlhs*lhs to check if functions in matrix kn are estimable |
| (kngl = kn if functions in kn are estimable) |
| kngl | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.08 | -0.08 | 0.00 | 0.41 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | 0.41 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | 0.41 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | 0.41 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | 0.41 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | 0.41 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| difknglkn | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.08 | -0.08 | 0.00 | -0.09 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | -0.09 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | -0.09 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | -0.09 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | -0.09 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| -0.08 | -0.08 | 0.00 | -0.09 | -0.01 | -0.07 | 0.08 | 0.10 | 0.02 | -0.06 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
| Compute uakn = vector of multibreed nonadditive genetic predictions |
| uakn |
|---|
| -18.57 |
| -18.57 |
| -18.57 |
| -18.57 |
| -18.57 |
| -18.57 |
| Compute vepuakn = matrix of variance of errors of nonadditive genetic predictions |
| vepuakn | |||||
|---|---|---|---|---|---|
| 35.05 | 35.05 | 35.05 | 35.05 | 35.05 | 35.05 |
| 35.05 | 35.05 | 35.05 | 35.05 | 35.05 | 35.05 |
| 35.05 | 35.05 | 35.05 | 35.05 | 35.05 | 35.05 |
| 35.05 | 35.05 | 35.05 | 35.05 | 35.05 | 35.05 |
| 35.05 | 35.05 | 35.05 | 35.05 | 35.05 | 35.05 |
| 35.05 | 35.05 | 35.05 | 35.05 | 35.05 | 35.05 |
| Compute sepuakn = vector of standard errors of nonadditive genetic predictions |
| sepuakn |
|---|
| 5.92 |
| 5.92 |
| 5.92 |
| 5.92 |
| 5.92 |
| 5.92 |
| Define kt = coefficient matrix of total direct and maternal genetic predictions |
| Assume that males will be mated to (1/2A 1/2B) females and viceversa |
| Construct coefficients for fixed snp additive genomic effects in matrix ka |
| kt | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | |
| ROW1 | 0 | 1 | -1 | 0.5 | 0 | 0 | 2 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
| ROW2 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| ROW3 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| ROW4 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| ROW5 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| ROW6 | 0 | 0.75 | -0.75 | 0.5 | 0 | 0 | 2 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| kt | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.50 | 0.00 | 0.00 | 2.00 | 1.00 | 1.00 | 2.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 2.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 2.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.00 | 0.75 | -0.75 | 0.50 | 0.00 | 0.00 | 2.00 | 1.00 | 2.00 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
| Compute ktgl = kt*ginvlhs*lhs to check if functions in matrix kt are estimable |
| (ktgl = kt if functions in kt are estimable) |
| ktgl | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.43 | 0.91 | -0.48 | 0.58 | 0.41 | 0.02 | 2.40 | 0.43 | 0.81 | 1.61 | 1.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.35 | -0.22 | 0.57 | 0.70 | 0.10 | 0.25 | 0.17 | 0.43 | 1.70 | 0.14 | 0.00 | 1.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.50 | 0.44 | 0.06 | 0.87 | 0.12 | 0.38 | 1.01 | 1.24 | -0.34 | 0.26 | 0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 0.00 |
| 0.50 | 0.44 | 0.06 | 0.87 | 0.12 | 0.38 | 1.01 | 1.24 | -0.34 | 0.26 | 0.00 | -0.00 | 0.00 | 1.00 | -0.00 | 0.00 |
| 0.58 | 0.57 | 0.01 | 0.76 | 0.43 | 0.15 | 1.24 | 1.24 | -0.24 | 0.72 | 0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
| 0.50 | 0.74 | -0.24 | 0.67 | 0.42 | 0.08 | 2.32 | 0.33 | 1.78 | 1.66 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 1.00 |
| difktglkt | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.43 | -0.09 | 0.52 | 0.08 | 0.41 | 0.02 | 0.40 | -0.57 | -0.19 | -0.39 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.35 | -0.22 | 0.57 | 0.20 | 0.10 | 0.25 | 0.17 | -0.57 | -0.30 | 0.14 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.50 | -0.06 | 0.56 | 0.37 | 0.12 | 0.38 | 0.01 | -0.76 | -0.34 | 0.26 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.50 | -0.06 | 0.56 | 0.37 | 0.12 | 0.38 | 0.01 | -0.76 | -0.34 | 0.26 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.58 | 0.07 | 0.51 | 0.26 | 0.43 | 0.15 | 0.24 | -0.76 | -0.24 | -0.28 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| 0.50 | -0.01 | 0.51 | 0.17 | 0.42 | 0.08 | 0.32 | -0.67 | -0.22 | -0.34 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 |
| Compute uakt = vector of multibreed total genetic predictions |
| uakt |
|---|
| 127.52 |
| 86.87 |
| 136.14 |
| 138.89 |
| 167.67 |
| 143.10 |
| Compute vepuakt = matrix of variance of errors of total genetic predictions |
| vepuakt | |||||
|---|---|---|---|---|---|
| 213.53 | 135.79 | 46.17 | 51.29 | 73.62 | 210.10 |
| 135.79 | 204.66 | 35.29 | 43.20 | 33.13 | 170.06 |
| 46.17 | 35.29 | 34.54 | 15.30 | 23.59 | 50.97 |
| 51.29 | 43.20 | 15.30 | 31.92 | 19.50 | 51.49 |
| 73.62 | 33.13 | 23.59 | 19.50 | 47.97 | 66.06 |
| 210.10 | 170.06 | 50.97 | 51.49 | 66.06 | 241.35 |
| Compute sepuakt = vector of standard errors of total genetic predictions |
| sepuakt |
|---|
| 14.61 |
| 14.31 |
| 5.88 |
| 5.65 |
| 6.93 |
| 15.54 |