| GEV_03_GENETIC-GENOMIC MODELS_COMPLETE OR MISSING GENOTYPES_October-31-2014_a November 1, 2014 | 
| INPUT DATA FILE | 
| Obs | animal | sire | dam | afa | afb | sfa | sfb | dfa | dfb | mgsfa | mgsfb | mgdfa | mgdfb | sex | bw | ww | snp01 | snp02 | snp03 | snp04 | snp05 | snp06 | snp07 | snp08 | snp09 | snp10 | snp11 | snp12 | snp13 | snp14 | snp15 | snp16 | snp17 | snp18 | snp19 | snp20 | snp21 | snp22 | snp23 | snp24 | snp25 | snp26 | snp27 | snp28 | snp29 | snp30 | snp31 | snp32 | snp33 | snp34 | snp35 | snp36 | snp37 | snp38 | snp39 | snp40 | snp41 | snp42 | snp43 | snp44 | snp45 | snp46 | snp47 | snp48 | snp49 | snp50 | snp51 | snp52 | snp53 | snp54 | snp55 | snp56 | snp57 | snp58 | snp59 | snp60 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 1.000 | 0.000 | 1.00 | 0.00 | 1.00 | 0.00 | 1 | 0 | 1.0 | 0.0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 
| 2 | 2 | 0 | 0 | 0.000 | 1.000 | 0.00 | 1.00 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 
| 3 | 3 | 0 | 2 | 0.500 | 0.500 | 1.00 | 0.00 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 
| 4 | 4 | 1 | 0 | 0.500 | 0.500 | 1.00 | 0.00 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 | 
| 5 | 5 | 1 | 2 | 0.500 | 0.500 | 1.00 | 0.00 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 | 
| 6 | 6 | 1 | 3 | 0.750 | 0.250 | 1.00 | 0.00 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 | 
| 7 | 7 | 0 | 3 | 0.250 | 0.750 | 0.00 | 1.00 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 1 | 28 | 272 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| 8 | 8 | 1 | 4 | 0.750 | 0.250 | 1.00 | 0.00 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 2 | 31 | 264 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| 9 | 9 | 5 | 8 | 0.625 | 0.375 | 0.50 | 0.50 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 2 | 30 | 270 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| 10 | 10 | 5 | 3 | 0.500 | 0.500 | 0.50 | 0.50 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 1 | 33 | 278 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| 11 | 11 | 6 | 0 | 0.375 | 0.625 | 0.75 | 0.25 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 2 | 27 | 259 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| 12 | 12 | 6 | 2 | 0.375 | 0.625 | 0.75 | 0.25 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 1 | 32 | 280 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| GEV_03_GENETIC-GENOMIC MODELS_COMPLETE OR MISSING GENOTYPES_October-31-2014_a November 1, 2014 | 
| Model_30_Animal_GEV_03_1T_Polygenic_October-31-2014_a November 1, 2014 | 
| GENETIC AND GENOMIC EVALUATION NOTES | 
| CHAPTER GEV_03 ALL MODELS | 
| MULTIPLE TRAIT GENETIC AND GENOMIC MODELS WITH: | 
| 1) UNEQUAL RESIDUAL, ADDITIVE GENETIC, AND NONADDITIVE GENETIC COVARIANCE MATRICES ACROSS BREED GROUPS | 
| 2) EQUAL RESIDUAL COVARIANCE MATRIX, UNEQUAL ADDITIVE AND NONADDITIVE GENETIC COVARIANCE MATRICES | 
| 3) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, UNEQUAL NONADDITIVE GENETIC COVARIANCE MATRICES | 
| 4) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, NO RANDOM NONADDITIVE GENETIC EFFECTS | 
| Mauricio A. Elzo, University of Florida, maelzo@ufl.edu | 
| Read input dataset (SAS file) | 
| datmat = matrix of input data | 
| datmat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | COL19 | COL20 | COL21 | COL22 | COL23 | COL24 | COL25 | COL26 | COL27 | COL28 | COL29 | COL30 | COL31 | COL32 | COL33 | COL34 | COL35 | COL36 | COL37 | COL38 | COL39 | COL40 | COL41 | COL42 | COL43 | COL44 | COL45 | COL46 | COL47 | COL48 | COL49 | COL50 | COL51 | COL52 | COL53 | COL54 | COL55 | COL56 | COL57 | COL58 | COL59 | COL60 | COL61 | COL62 | COL63 | COL64 | COL65 | COL66 | COL67 | COL68 | COL69 | COL70 | COL71 | COL72 | COL73 | COL74 | COL75 | COL76 | |
| ROW1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 
| ROW2 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 
| ROW3 | 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 
| ROW4 | 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 | 
| ROW5 | 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 | 
| ROW6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 | 
| ROW7 | 7 | 0 | 3 | 0.25 | 0.75 | 0 | 1 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 28 | 272 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| ROW8 | 8 | 1 | 4 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 2 | 31 | 264 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| ROW9 | 9 | 5 | 8 | 0.625 | 0.375 | 0.5 | 0.5 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 2 | 30 | 270 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| ROW10 | 10 | 5 | 3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 33 | 278 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| ROW11 | 11 | 6 | 0 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 27 | 259 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| ROW12 | 12 | 6 | 2 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 32 | 280 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 
| Read allele frequencies input dataset (SAS file) | 
| ntsnp | 
|---|
| 60 | 
| snpfreq | |
|---|---|
| 1 | 0.1509 | 
| 2 | 0.4252 | 
| 3 | 0.1842 | 
| 4 | 0.5314 | 
| 5 | 0.6242 | 
| 6 | 0.4292 | 
| 7 | 0.2036 | 
| 8 | 0.3518 | 
| 9 | 0.5454 | 
| 10 | 0.1048 | 
| 11 | 0.3338 | 
| 12 | 0.3284 | 
| 13 | 0.006 | 
| 14 | 0.502 | 
| 15 | 0.2263 | 
| 16 | 0.4706 | 
| 17 | 0.0808 | 
| 18 | 0.7216 | 
| 19 | 0.026 | 
| 20 | 0.3271 | 
| 21 | 0.8718 | 
| 22 | 0.0948 | 
| 23 | 0.3825 | 
| 24 | 0.0561 | 
| 25 | 0.5401 | 
| 26 | 0.6809 | 
| 27 | 0.785 | 
| 28 | 0.3758 | 
| 29 | 0.0067 | 
| 30 | 0.7891 | 
| 31 | 0.0581 | 
| 32 | 0.1429 | 
| 33 | 0.6041 | 
| 34 | 0.7196 | 
| 35 | 0.9386 | 
| 36 | 0.6335 | 
| 37 | 0.4312 | 
| 38 | 0.0033 | 
| 39 | 0.2717 | 
| 40 | 0.2203 | 
| 41 | 0.5794 | 
| 42 | 0.2023 | 
| 43 | 0.5134 | 
| 44 | 0.755 | 
| 45 | 0.5648 | 
| 46 | 0.518 | 
| 47 | 0.3458 | 
| 48 | 0.4806 | 
| 49 | 0.3258 | 
| 50 | 0.3117 | 
| 51 | 0.7503 | 
| 52 | 0.4132 | 
| 53 | 0.743 | 
| 54 | 0.6061 | 
| 55 | 0.9933 | 
| 56 | 0.7377 | 
| 57 | 0.9399 | 
| 58 | 0.4419 | 
| 59 | 0.1295 | 
| 60 | 0.0928 | 
| Enter Parameters for Current Run | 
| Enter restronsol = 1 to impose restrictions on solutions to solve the MME, else = 0 if not | 
| restronsol | 
|---|
| 0 | 
| No restrictions imposed on solutions to solve MME | 
| Enter nt = Number of traits | 
| nt | 
|---|
| 1 | 
| Enter nfixpol = Number of fixed environmental and polygenic genetic effects | 
| nfixpol | 
|---|
| 6 | 
| Define nbr for the computation of gene content | 
| nbr | 
|---|
| 2 | 
| Enter nrec = Number of records | 
| nrec | 
|---|
| 12 | 
| Enter number of first non-genotyped animal (non-genotyped animals are last in the datafile) | 
| nongenanim1 | 
|---|
| 7 | 
| Enter nanim = Number of animals | 
| nanim | 
|---|
| 12 | 
| Enter 1 if model combines additive genetic and genomic relationships, else enter 0 | 
| Enter nsnp = number of fixed marker locus genomic effects in the model | 
| nsnp | 
|---|
| 0 | 
| Enter 1 if random marker genomic effects in the model, else enter zero | 
| ranma | 
|---|
| 0 | 
| Enter 1 if random additive polygenic genetic effects in the model, else enter zero | 
| addpol | 
|---|
| 1 | 
| Enter 1 if random additive genomic marker effects in the model, else enter zero | 
| addma | 
|---|
| 0 | 
| Enter 1 if random nonadditive polygenic genetic effects in the model, else enter zero | 
| nadpol | 
|---|
| 0 | 
| Enter 1 if zma values are [0,1,2] if zma values are [VanRaden(2009)] | 
| zmaval | 
|---|
| 1 | 
| Enter 1 if igenomebv are to be computed, else enter zero | 
| Enter 1 if icompmissgenot are to be computed, else enter zero | 
| Compute nf = Number of equations for fixed effects in the MME | 
| nf | 
|---|
| 6 | 
| Compute nma = Number of equations for marker locus additive genetic effects in the MME | 
| nma | 
|---|
| 0 | 
| Compute nga = Number of equations for random animal additive polygenic effects in the MME | 
| nga | 
|---|
| 12 | 
| nga | 
|---|
| 12 | 
| Compute ngn = Number of equations for random polygenic nonadditive genetic effects in the MME | 
| ngn | 
|---|
| 0 | 
| Compute neq = nf+nma+nga+ngn = total number of equations in the MME | 
| neq | 
|---|
| 18 | 
| Define pedigf = pedigree file with breed composition of animals, sires, and dams | 
| pedigf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 
| 7 | 0 | 3 | 0.25 | 0.75 | 0 | 1 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 
| 8 | 1 | 4 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 
| 9 | 5 | 8 | 0.625 | 0.375 | 0.5 | 0.5 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 
| 10 | 5 | 3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 
| 11 | 6 | 0 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 12 | 6 | 2 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 | 
| Construct xf = matrix of fixed and random effects | 
| Construct fixed effects in matrix xf | 
| Construct random polygenic additive genetic effects in matrix xf | 
| xf | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
| ROW1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW3 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW4 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW5 | 1 | 0.5 | 0.5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW6 | 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW7 | 1 | 0.25 | 0.75 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| ROW8 | 1 | 0.75 | 0.25 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| ROW9 | 1 | 0.625 | 0.375 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| ROW10 | 1 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| ROW11 | 1 | 0.375 | 0.625 | 0.75 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| ROW12 | 1 | 0.375 | 0.625 | 0.75 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| Make x = xf, i.e., use computed xf | 
| x | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
| ROW1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW3 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW4 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW5 | 1 | 0.5 | 0.5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW6 | 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW7 | 1 | 0.25 | 0.75 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| ROW8 | 1 | 0.75 | 0.25 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| ROW9 | 1 | 0.625 | 0.375 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| ROW10 | 1 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| ROW11 | 1 | 0.375 | 0.625 | 0.75 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| ROW12 | 1 | 0.375 | 0.625 | 0.75 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| Enter intrabreed and interbreed environmental variances | 
| veaa | vebb | veab | 
|---|---|---|
| 49 | 16 | 25 | 
| Compute vef = block-diagonal matrix of multibreed residual covariance matrices for individual animals | 
| pedigf | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 
| 7 | 0 | 3 | 0.25 | 0.75 | 0 | 1 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 
| 8 | 1 | 4 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 
| 9 | 5 | 8 | 0.625 | 0.375 | 0.5 | 0.5 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 
| 10 | 5 | 3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 
| 11 | 6 | 0 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 12 | 6 | 2 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 | 
| vef | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 30.5 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47.5625 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.0625 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.0625 | 
| Make r = vef | 
| r = block-diagonal matrix of residual covariance matrices for individual animals | 
| r | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 30.5 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47.5625 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.0625 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.0625 | 
| invr = inverse of block-diagonal matrix of residual covariance matrices for individual animals | 
| invr | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0204082 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0.0625 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0.0327869 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.021025 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0222222 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 | 
| Read yf = vector of records | 
| yf | 
|---|
| 289 | 
| 245 | 
| 256 | 
| 261 | 
| 292 | 
| 286 | 
| 272 | 
| 264 | 
| 270 | 
| 278 | 
| 259 | 
| 280 | 
| Make y = yf, i.e., use read yf | 
| y | 
|---|
| 289 | 
| 245 | 
| 256 | 
| 261 | 
| 292 | 
| 286 | 
| 272 | 
| 264 | 
| 270 | 
| 278 | 
| 259 | 
| 280 | 
| Compute xtinvr = x transpose times r | 
| xtinvr | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 | 0.0327869 | 0.0212766 | 0.021025 | 0.0222222 | 0.0302457 | 0.0302457 | 
| 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 | 0.0081967 | 0.0159574 | 0.0131406 | 0.0111111 | 0.0113422 | 0.0113422 | 
| 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 | 0.0245902 | 0.0053191 | 0.0078844 | 0.0111111 | 0.0189036 | 0.0189036 | 
| 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 | 0.0163934 | 0.0106383 | 0.0105125 | 0.0111111 | 0.0226843 | 0.0226843 | 
| 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 | 0.0327869 | 0 | 0 | 0.0222222 | 0 | 0.0302457 | 
| 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0.0212766 | 0.021025 | 0 | 0.0302457 | 0 | 
| 0.0204082 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0.0625 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0.0327869 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.021025 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0222222 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 | 
| Compute xtinvrx = x transpose times r times x | 
| xtinvrx | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
| ROW1 | 0.3542946 | 0.1536096 | 0.200685 | 0.1969699 | 0.1577088 | 0.1965858 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 | 0.0327869 | 0.0212766 | 0.021025 | 0.0222222 | 0.0302457 | 0.0302457 | 
| ROW2 | 0.1536096 | 0.0917455 | 0.0618642 | 0.0953487 | 0.0824002 | 0.0712094 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 | 0.0081967 | 0.0159574 | 0.0131406 | 0.0111111 | 0.0113422 | 0.0113422 | 
| ROW3 | 0.200685 | 0.0618642 | 0.1388208 | 0.1016212 | 0.0753086 | 0.1253763 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 | 0.0245902 | 0.0053191 | 0.0078844 | 0.0111111 | 0.0189036 | 0.0189036 | 
| ROW4 | 0.1969699 | 0.0953487 | 0.1016212 | 0.155981 | 0.0915964 | 0.1053736 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 | 0.0163934 | 0.0106383 | 0.0105125 | 0.0111111 | 0.0226843 | 0.0226843 | 
| ROW5 | 0.1577088 | 0.0824002 | 0.0753086 | 0.0915964 | 0.1577088 | 0 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 | 0.0327869 | 0 | 0 | 0.0222222 | 0 | 0.0302457 | 
| ROW6 | 0.1965858 | 0.0712094 | 0.1253763 | 0.1053736 | 0 | 0.1965858 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0.0212766 | 0.021025 | 0 | 0.0302457 | 0 | 
| ROW7 | 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0204082 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW8 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW9 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW10 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW11 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW12 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW13 | 0.0327869 | 0.0081967 | 0.0245902 | 0.0163934 | 0.0327869 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0327869 | 0 | 0 | 0 | 0 | 0 | 
| ROW14 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 
| ROW15 | 0.021025 | 0.0131406 | 0.0078844 | 0.0105125 | 0 | 0.021025 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.021025 | 0 | 0 | 0 | 
| ROW16 | 0.0222222 | 0.0111111 | 0.0111111 | 0.0111111 | 0.0222222 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0222222 | 0 | 0 | 
| ROW17 | 0.0302457 | 0.0113422 | 0.0189036 | 0.0226843 | 0 | 0.0302457 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 | 0 | 
| ROW18 | 0.0302457 | 0.0113422 | 0.0189036 | 0.0226843 | 0.0302457 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 | 
| Enter intrabreed and interbreed additive genetic covariance matrices | 
| vaaa | vabb | vaab | 
|---|---|---|
| 36 | 44 | 22 | 
| Compute the inverse of the additive polygenic covariance matrix | 
| Compute vaf = multibreed additive genetic covariance matrices for individual animals | 
| vaf | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 43.5 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 47.5 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.5 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48.625 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45.125 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45.125 | 
| Compute diagonals of additive relationship matrix | 
| Animals MUST be ordered from oldest to youngest | 
| Base animals have unknown parents | 
| Additive relationship of each animal with itself | 
| addrel | 
|---|
| 1 | 
| 1 | 
| 1 | 
| 1 | 
| 1 | 
| 1 | 
| 1 | 
| 1.25 | 
| 1.1875 | 
| 1.125 | 
| 1 | 
| 1.125 | 
| Compute daf = block-diagonal matrix of residual additive genetic covariance matrices | 
| Recall: (Ga)-1 = (I - 1/2 P') (Block-diagonal Da)-1 (I - 1/2 P) for [dai]-1 blocks | 
| Accounting for multibreed inbreeding completely (Elzo, 1990) | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 1 | 36 | 6 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 1 | 6 | 6 | 36 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 2 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 3 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 4 | 3 | 3 | 9 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 5 | 3 | 3 | 9 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 6 | 3 | 3 | 9 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 7 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 8 | 4.5 | 4.5 | 20.25 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 9 | 3.75 | 3.75 | 14.0625 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 10 | 1.5 | 1.5 | 2.25 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 11 | 1.5 | 1.5 | 2.25 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 1 | 12 | 1.5 | 1.5 | 2.25 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 1 | 13 | 6 | 36 | 
| 0 | 0 | ||
| 0 | 0 | ||
| 3 | 9 | ||
| 3 | 9 | ||
| 3 | 9 | ||
| 0 | 0 | ||
| 4.5 | 20.25 | ||
| 3.75 | 14.0625 | ||
| 1.5 | 2.25 | ||
| 1.5 | 2.25 | ||
| 1.5 | 2.25 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 2 | 44 | 6.6332496 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 2 | 6.6332496 | 6.6332496 | 44 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 3 | 3.3166248 | 3.3166248 | 11 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 4 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 5 | 3.3166248 | 3.3166248 | 11 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 6 | 1.6583124 | 1.6583124 | 2.75 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 7 | 1.6583124 | 1.6583124 | 2.75 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 8 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 9 | 1.6583124 | 1.6583124 | 2.75 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 10 | 3.3166248 | 3.3166248 | 11 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 11 | 0.8291562 | 0.8291562 | 0.6875 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 2 | 12 | 4.145781 | 4.145781 | 17.1875 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 2 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 3.3166248 | 11 | ||
| 0 | 9 | ||
| 3.3166248 | 20 | ||
| 1.6583124 | 11.75 | ||
| 1.6583124 | 2.75 | ||
| 0 | 20.25 | ||
| 1.6583124 | 16.8125 | ||
| 3.3166248 | 13.25 | ||
| 0.8291562 | 2.9375 | ||
| 4.145781 | 19.4375 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 3 | 29 | 5.3851648 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 3 | 5.3851648 | 5.3851648 | 29 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 4 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 5 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 6 | 2.6925824 | 2.6925824 | 7.25 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 7 | 2.6925824 | 2.6925824 | 7.25 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 8 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 9 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 10 | 2.6925824 | 2.6925824 | 7.25 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 11 | 1.3462912 | 1.3462912 | 1.8125 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 3 | 12 | 1.3462912 | 1.3462912 | 1.8125 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 3 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 0 | 9 | ||
| 0 | 20 | ||
| 2.6925824 | 19 | ||
| 2.6925824 | 10 | ||
| 0 | 20.25 | ||
| 0 | 16.8125 | ||
| 2.6925824 | 20.5 | ||
| 1.3462912 | 4.75 | ||
| 1.3462912 | 21.25 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 4 | 31 | 5.5677644 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 4 | 4 | 5.5677644 | 5.5677644 | 31 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 4 | 5 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 4 | 6 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 4 | 7 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 4 | 8 | 2.7838822 | 2.7838822 | 7.75 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 4 | 9 | 1.3919411 | 1.3919411 | 1.9375 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 4 | 10 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 4 | 11 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 4 | 12 | 0 | 0 | 0 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 4 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 5.5677644 | 40 | ||
| 0 | 20 | ||
| 0 | 19 | ||
| 0 | 10 | ||
| 2.7838822 | 28 | ||
| 1.3919411 | 18.75 | ||
| 0 | 20.5 | ||
| 0 | 4.75 | ||
| 0 | 21.25 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 5 | 20 | 4.472136 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 5 | 5 | 4.472136 | 4.472136 | 20 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 5 | 6 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 5 | 7 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 5 | 8 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 5 | 9 | 2.236068 | 2.236068 | 5 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 5 | 10 | 2.236068 | 2.236068 | 5 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 5 | 11 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 5 | 12 | 0 | 0 | 0 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 5 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 5.5677644 | 40 | ||
| 4.472136 | 40 | ||
| 0 | 19 | ||
| 0 | 10 | ||
| 0 | 28 | ||
| 2.236068 | 23.75 | ||
| 2.236068 | 25.5 | ||
| 0 | 4.75 | ||
| 0 | 21.25 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 6 | 24.5 | 4.9497475 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 6 | 6 | 4.9497475 | 4.9497475 | 24.5 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 6 | 7 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 6 | 8 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 6 | 9 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 6 | 10 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 6 | 11 | 2.4748737 | 2.4748737 | 6.125 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 6 | 12 | 2.4748737 | 2.4748737 | 6.125 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 6 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 5.5677644 | 40 | ||
| 4.472136 | 40 | ||
| 4.9497475 | 43.5 | ||
| 0 | 10 | ||
| 0 | 28 | ||
| 0 | 23.75 | ||
| 0 | 25.5 | ||
| 2.4748737 | 10.875 | ||
| 2.4748737 | 27.375 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 7 | 37.5 | 6.1237244 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 7 | 7 | 6.1237244 | 6.1237244 | 37.5 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 7 | 8 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 7 | 9 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 7 | 10 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 7 | 11 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 7 | 12 | 0 | 0 | 0 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 7 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 5.5677644 | 40 | ||
| 4.472136 | 40 | ||
| 4.9497475 | 43.5 | ||
| 6.1237244 | 47.5 | ||
| 0 | 28 | ||
| 0 | 23.75 | ||
| 0 | 25.5 | ||
| 0 | 10.875 | ||
| 0 | 27.375 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 8 | 24.5 | 4.9497475 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 8 | 8 | 4.9497475 | 4.9497475 | 24.5 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 8 | 9 | 2.4748737 | 2.4748737 | 6.125 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 8 | 10 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 8 | 11 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 8 | 12 | 0 | 0 | 0 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 8 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 5.5677644 | 40 | ||
| 4.472136 | 40 | ||
| 4.9497475 | 43.5 | ||
| 6.1237244 | 47.5 | ||
| 4.9497475 | 52.5 | ||
| 2.4748737 | 29.875 | ||
| 0 | 25.5 | ||
| 0 | 10.875 | ||
| 0 | 27.375 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 9 | 25.5 | 5.0497525 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 9 | 9 | 5.0497525 | 5.0497525 | 25.5 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 9 | 10 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 9 | 11 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 9 | 12 | 0 | 0 | 0 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 9 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 5.5677644 | 40 | ||
| 4.472136 | 40 | ||
| 4.9497475 | 43.5 | ||
| 6.1237244 | 47.5 | ||
| 4.9497475 | 52.5 | ||
| 5.0497525 | 55.375 | ||
| 0 | 25.5 | ||
| 0 | 10.875 | ||
| 0 | 27.375 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 10 | 31 | 5.5677644 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 10 | 10 | 5.5677644 | 5.5677644 | 31 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 10 | 11 | 0 | 0 | 0 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 10 | 12 | 0 | 0 | 0 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 10 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 5.5677644 | 40 | ||
| 4.472136 | 40 | ||
| 4.9497475 | 43.5 | ||
| 6.1237244 | 47.5 | ||
| 4.9497475 | 52.5 | ||
| 5.0497525 | 55.375 | ||
| 5.5677644 | 56.5 | ||
| 0 | 10.875 | ||
| 0 | 27.375 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 11 | 34.25 | 5.85235 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 11 | 11 | 5.85235 | 5.85235 | 34.25 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 11 | 12 | 0 | 0 | 0 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 11 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 5.5677644 | 40 | ||
| 4.472136 | 40 | ||
| 4.9497475 | 43.5 | ||
| 6.1237244 | 47.5 | ||
| 4.9497475 | 52.5 | ||
| 5.0497525 | 55.375 | ||
| 5.5677644 | 56.5 | ||
| 5.85235 | 45.125 | ||
| 0 | 27.375 | 
| i | sqvii | vii | |
|---|---|---|---|
| animal i | 12 | 23.25 | 4.8218254 | 
| i | j | tvii | vii | uii | 
|---|---|---|---|---|
| 12 | 12 | 4.8218254 | 4.8218254 | 23.25 | 
| i | j | vmat | umat | 
|---|---|---|---|
| 12 | 13 | 6 | 36 | 
| 6.6332496 | 44 | ||
| 5.3851648 | 40 | ||
| 5.5677644 | 40 | ||
| 4.472136 | 40 | ||
| 4.9497475 | 43.5 | ||
| 6.1237244 | 47.5 | ||
| 4.9497475 | 52.5 | ||
| 5.0497525 | 55.375 | ||
| 5.5677644 | 56.5 | ||
| 5.85235 | 45.125 | ||
| 4.8218254 | 50.625 | 
| Block-diagonal matrix da for populations with inbred animals | 
| da | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 24.5 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 37.5 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24.5 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25.5 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34.25 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23.25 | 
| Compute dainv = inverse of da | 
| dainv = inverse of block-diagonal matrix of residual additive genetic covariance matrices | 
| dainv | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0277778 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0.0227273 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0.0344828 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0.0322581 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0.0408163 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0.0266667 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0408163 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0392157 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0322581 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0291971 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0430108 | 
| Compute gainv = inverse of the matrix of multibreed additive genetic covariances | 
| Using algorithm to compute gainv directly; Elzo (1990a),JAS 68:1215-1228 | 
| gainv | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0687505 | 0.0125 | 0.0102041 | -0.005925 | -0.025 | -0.020408 | 0 | -0.020408 | 0 | 0 | 0 | 0 | 
| 0.0125 | 0.0546007 | -0.017241 | 0 | -0.025 | 0.0107527 | 0 | 0 | 0 | 0 | 0 | -0.021505 | 
| 0.0102041 | -0.017241 | 0.059418 | 0 | 0.0080645 | -0.020408 | -0.013333 | 0 | 0 | -0.016129 | 0 | 0 | 
| -0.005925 | 0 | 0 | 0.0424621 | 0 | 0 | 0 | -0.020408 | 0 | 0 | 0 | 0 | 
| -0.025 | -0.025 | 0.0080645 | 0 | 0.0678684 | 0 | 0 | 0.0098039 | -0.019608 | -0.016129 | 0 | 0 | 
| -0.020408 | 0.0107527 | -0.020408 | 0 | 0 | 0.0588683 | 0 | 0 | 0 | 0 | -0.014599 | -0.021505 | 
| 0 | 0 | -0.013333 | 0 | 0 | 0 | 0.0266667 | 0 | 0 | 0 | 0 | 0 | 
| -0.020408 | 0 | 0 | -0.020408 | 0.0098039 | 0 | 0 | 0.0506202 | -0.019608 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | -0.019608 | 0 | 0 | -0.019608 | 0.0392157 | 0 | 0 | 0 | 
| 0 | 0 | -0.016129 | 0 | -0.016129 | 0 | 0 | 0 | 0 | 0.0322581 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | -0.014599 | 0 | 0 | 0 | 0 | 0.0291971 | 0 | 
| 0 | -0.021505 | 0 | 0 | 0 | -0.021505 | 0 | 0 | 0 | 0 | 0 | 0.0430108 | 
| gainv | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.069 | 0.013 | 0.010 | -0.006 | -0.025 | -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 
| 0.013 | 0.055 | -0.017 | 0.000 | -0.025 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.022 | 
| 0.010 | -0.017 | 0.059 | 0.000 | 0.008 | -0.020 | -0.013 | 0.000 | 0.000 | -0.016 | 0.000 | 0.000 | 
| -0.006 | 0.000 | 0.000 | 0.042 | 0.000 | 0.000 | 0.000 | -0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 
| -0.025 | -0.025 | 0.008 | 0.000 | 0.068 | 0.000 | 0.000 | 0.010 | -0.020 | -0.016 | 0.000 | 0.000 | 
| -0.020 | 0.011 | -0.020 | 0.000 | 0.000 | 0.059 | 0.000 | 0.000 | 0.000 | 0.000 | -0.015 | -0.022 | 
| 0.000 | 0.000 | -0.013 | 0.000 | 0.000 | 0.000 | 0.027 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| -0.020 | 0.000 | 0.000 | -0.020 | 0.010 | 0.000 | 0.000 | 0.051 | -0.020 | 0.000 | 0.000 | 0.000 | 
| 0.000 | 0.000 | 0.000 | 0.000 | -0.020 | 0.000 | 0.000 | -0.020 | 0.039 | 0.000 | 0.000 | 0.000 | 
| 0.000 | 0.000 | -0.016 | 0.000 | -0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 | 
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.029 | 0.000 | 
| 0.000 | -0.022 | 0.000 | 0.000 | 0.000 | -0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.043 | 
| Compute lhs = left hand side of the MME | 
| Add gainv to lhs | 
| lhs | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
| ROW1 | 0.3542946 | 0.1536096 | 0.200685 | 0.1969699 | 0.1577088 | 0.1965858 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 | 0.0327869 | 0.0212766 | 0.021025 | 0.0222222 | 0.0302457 | 0.0302457 | 
| ROW2 | 0.1536096 | 0.0917455 | 0.0618642 | 0.0953487 | 0.0824002 | 0.0712094 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 | 0.0081967 | 0.0159574 | 0.0131406 | 0.0111111 | 0.0113422 | 0.0113422 | 
| ROW3 | 0.200685 | 0.0618642 | 0.1388208 | 0.1016212 | 0.0753086 | 0.1253763 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 | 0.0245902 | 0.0053191 | 0.0078844 | 0.0111111 | 0.0189036 | 0.0189036 | 
| ROW4 | 0.1969699 | 0.0953487 | 0.1016212 | 0.155981 | 0.0915964 | 0.1053736 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 | 0.0163934 | 0.0106383 | 0.0105125 | 0.0111111 | 0.0226843 | 0.0226843 | 
| ROW5 | 0.1577088 | 0.0824002 | 0.0753086 | 0.0915964 | 0.1577088 | 0 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 | 0.0327869 | 0 | 0 | 0.0222222 | 0 | 0.0302457 | 
| ROW6 | 0.1965858 | 0.0712094 | 0.1253763 | 0.1053736 | 0 | 0.1965858 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0.0212766 | 0.021025 | 0 | 0.0302457 | 0 | 
| ROW7 | 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0891586 | 0.0125 | 0.0102041 | -0.005925 | -0.025 | -0.020408 | 0 | -0.020408 | 0 | 0 | 0 | 0 | 
| ROW8 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0.0125 | 0.1171007 | -0.017241 | 0 | -0.025 | 0.0107527 | 0 | 0 | 0 | 0 | 0 | -0.021505 | 
| ROW9 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0102041 | -0.017241 | 0.0901873 | 0 | 0.0080645 | -0.020408 | -0.013333 | 0 | 0 | -0.016129 | 0 | 0 | 
| ROW10 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | -0.005925 | 0 | 0 | 0.0732314 | 0 | 0 | 0 | -0.020408 | 0 | 0 | 0 | 0 | 
| ROW11 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | -0.025 | -0.025 | 0.0080645 | 0 | 0.0986377 | 0 | 0 | 0.0098039 | -0.019608 | -0.016129 | 0 | 0 | 
| ROW12 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | -0.020408 | 0.0107527 | -0.020408 | 0 | 0 | 0.0801449 | 0 | 0 | 0 | 0 | -0.014599 | -0.021505 | 
| ROW13 | 0.0327869 | 0.0081967 | 0.0245902 | 0.0163934 | 0.0327869 | 0 | 0 | 0 | -0.013333 | 0 | 0 | 0 | 0.0594536 | 0 | 0 | 0 | 0 | 0 | 
| ROW14 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0 | 0.0212766 | -0.020408 | 0 | 0 | -0.020408 | 0.0098039 | 0 | 0 | 0.0718968 | -0.019608 | 0 | 0 | 0 | 
| ROW15 | 0.021025 | 0.0131406 | 0.0078844 | 0.0105125 | 0 | 0.021025 | 0 | 0 | 0 | 0 | -0.019608 | 0 | 0 | -0.019608 | 0.0602407 | 0 | 0 | 0 | 
| ROW16 | 0.0222222 | 0.0111111 | 0.0111111 | 0.0111111 | 0.0222222 | 0 | 0 | 0 | -0.016129 | 0 | -0.016129 | 0 | 0 | 0 | 0 | 0.0544803 | 0 | 0 | 
| ROW17 | 0.0302457 | 0.0113422 | 0.0189036 | 0.0226843 | 0 | 0.0302457 | 0 | 0 | 0 | 0 | 0 | -0.014599 | 0 | 0 | 0 | 0 | 0.0594428 | 0 | 
| ROW18 | 0.0302457 | 0.0113422 | 0.0189036 | 0.0226843 | 0.0302457 | 0 | 0 | -0.021505 | 0 | 0 | 0 | -0.021505 | 0 | 0 | 0 | 0 | 0 | 0.0732565 | 
| lhs | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.354 | 0.154 | 0.201 | 0.197 | 0.158 | 0.197 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 | 0.033 | 0.021 | 0.021 | 0.022 | 0.030 | 0.030 | 
| 0.154 | 0.092 | 0.062 | 0.095 | 0.082 | 0.071 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 | 0.008 | 0.016 | 0.013 | 0.011 | 0.011 | 0.011 | 
| 0.201 | 0.062 | 0.139 | 0.102 | 0.075 | 0.125 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 | 0.025 | 0.005 | 0.008 | 0.011 | 0.019 | 0.019 | 
| 0.197 | 0.095 | 0.102 | 0.156 | 0.092 | 0.105 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 | 0.016 | 0.011 | 0.011 | 0.011 | 0.023 | 0.023 | 
| 0.158 | 0.082 | 0.075 | 0.092 | 0.158 | 0.000 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 | 0.033 | 0.000 | 0.000 | 0.022 | 0.000 | 0.030 | 
| 0.197 | 0.071 | 0.125 | 0.105 | 0.000 | 0.197 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 | 0.000 | 0.021 | 0.021 | 0.000 | 0.030 | 0.000 | 
| 0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.089 | 0.013 | 0.010 | -0.006 | -0.025 | -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 
| 0.063 | 0.000 | 0.063 | 0.000 | 0.000 | 0.063 | 0.013 | 0.117 | -0.017 | 0.000 | -0.025 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.022 | 
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.010 | -0.017 | 0.090 | 0.000 | 0.008 | -0.020 | -0.013 | 0.000 | 0.000 | -0.016 | 0.000 | 0.000 | 
| 0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | -0.006 | 0.000 | 0.000 | 0.073 | 0.000 | 0.000 | 0.000 | -0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 
| 0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | -0.025 | -0.025 | 0.008 | 0.000 | 0.099 | 0.000 | 0.000 | 0.010 | -0.020 | -0.016 | 0.000 | 0.000 | 
| 0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | -0.020 | 0.011 | -0.020 | 0.000 | 0.000 | 0.080 | 0.000 | 0.000 | 0.000 | 0.000 | -0.015 | -0.022 | 
| 0.033 | 0.008 | 0.025 | 0.016 | 0.033 | 0.000 | 0.000 | 0.000 | -0.013 | 0.000 | 0.000 | 0.000 | 0.059 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| 0.021 | 0.016 | 0.005 | 0.011 | 0.000 | 0.021 | -0.020 | 0.000 | 0.000 | -0.020 | 0.010 | 0.000 | 0.000 | 0.072 | -0.020 | 0.000 | 0.000 | 0.000 | 
| 0.021 | 0.013 | 0.008 | 0.011 | 0.000 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | -0.020 | 0.000 | 0.000 | -0.020 | 0.060 | 0.000 | 0.000 | 0.000 | 
| 0.022 | 0.011 | 0.011 | 0.011 | 0.022 | 0.000 | 0.000 | 0.000 | -0.016 | 0.000 | -0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.054 | 0.000 | 0.000 | 
| 0.030 | 0.011 | 0.019 | 0.023 | 0.000 | 0.030 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.059 | 0.000 | 
| 0.030 | 0.011 | 0.019 | 0.023 | 0.030 | 0.000 | 0.000 | -0.022 | 0.000 | 0.000 | 0.000 | -0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.073 | 
| Compute rhs = right hand side of the MME | 
| rhs | 
|---|
| 94.879904 | 
| 42.100491 | 
| 52.779413 | 
| 53.35649 | 
| 44.532301 | 
| 50.347603 | 
| 5.8979592 | 
| 15.3125 | 
| 7.8769231 | 
| 8.0307692 | 
| 8.9846154 | 
| 6.0851064 | 
| 8.9180328 | 
| 5.6170213 | 
| 5.6767411 | 
| 6.1777778 | 
| 7.8336484 | 
| 8.4688091 | 
| rhs | 
|---|
| 94.88 | 
| 42.10 | 
| 52.78 | 
| 53.36 | 
| 44.53 | 
| 50.35 | 
| 5.90 | 
| 15.31 | 
| 7.88 | 
| 8.03 | 
| 8.98 | 
| 6.09 | 
| 8.92 | 
| 5.62 | 
| 5.68 | 
| 6.18 | 
| 7.83 | 
| 8.47 | 
| Compute ginvlhs = generalized inverse of the left hand side of the MME | 
| ginvlhs | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
| ROW1 | 7.010421 | 5.981304 | 1.029117 | -9.493370 | 3.773432 | 3.236989 | -8.098097 | -8.148935 | -5.527533 | -4.653024 | -7.282614 | -8.172574 | -5.819226 | -7.923921 | -8.308871 | -7.684764 | -5.066929 | -7.495720 | 
| ROW2 | 5.981304 | 35.086344 | -29.10504 | -9.325371 | -1.714712 | 7.696016 | -19.19255 | 11.434982 | 0.388825 | -10.28266 | -2.473859 | -11.02563 | 7.506292 | -20.25523 | -14.38865 | -1.675587 | -3.547344 | 3.324370 | 
| ROW3 | 1.029117 | -29.10504 | 30.134157 | -0.167999 | 5.488144 | -4.459026 | 11.094455 | -19.58392 | -5.916358 | 5.629632 | -4.808755 | 2.853052 | -13.32552 | 12.331307 | 6.079782 | -6.009177 | -1.519585 | -10.82009 | 
| ROW4 | -9.493370 | -9.325371 | -0.167999 | 32.882037 | -4.332850 | -5.160520 | 4.570016 | 6.326752 | -4.199428 | -4.690788 | -1.364305 | -0.544679 | -1.028616 | 2.166987 | 1.693709 | -0.777573 | -3.393082 | -1.289042 | 
| ROW5 | 3.773432 | -1.714712 | 5.488144 | -4.332850 | 7.775667 | -4.002235 | -4.326298 | -5.034449 | -2.797078 | 0.813790 | -6.514578 | -5.947458 | -7.835064 | 0.143193 | -1.582116 | -7.353465 | -1.108852 | -7.801226 | 
| ROW6 | 3.236989 | 7.696016 | -4.459026 | -5.160520 | -4.002235 | 7.239224 | -3.771799 | -3.114486 | -2.730455 | -5.466814 | -0.768036 | -2.225116 | 2.015838 | -8.067114 | -6.726754 | -0.331299 | -3.958077 | 0.305506 | 
| ROW7 | -8.098097 | -19.19255 | 11.094455 | 4.570016 | -4.326298 | -3.771799 | 32.307837 | 1.152090 | 6.524530 | 13.572270 | 15.064514 | 19.890694 | 5.112128 | 22.211500 | 18.212837 | 12.178881 | 9.314516 | 10.000618 | 
| ROW8 | -8.148935 | 11.434982 | -19.58392 | 6.326752 | -5.034449 | -3.114486 | 1.152090 | 32.850818 | 14.569265 | 4.827659 | 14.590161 | 8.013278 | 15.316563 | 3.402771 | 8.752394 | 14.381787 | 9.330710 | 18.763251 | 
| ROW9 | -5.527533 | 0.388825 | -5.916358 | -4.199428 | -2.797078 | -2.730455 | 6.524530 | 14.569265 | 25.772890 | 9.547394 | 12.024475 | 15.460520 | 13.922075 | 9.416191 | 11.283292 | 16.569363 | 11.408635 | 15.019519 | 
| ROW10 | -4.653024 | -10.28266 | 5.629632 | -4.690788 | 0.813790 | -5.466814 | 13.572270 | 4.827659 | 9.547394 | 27.568736 | 9.882567 | 12.644874 | 4.640997 | 20.148062 | 15.631491 | 9.223941 | 10.216426 | 8.306272 | 
| ROW11 | -7.282614 | -2.473859 | -4.808755 | -1.364305 | -6.514578 | -0.768036 | 15.064514 | 14.590161 | 12.024475 | 9.882567 | 27.928985 | 16.005362 | 13.011579 | 11.403591 | 17.019335 | 19.219646 | 10.549007 | 16.724586 | 
| ROW12 | -8.172574 | -11.02563 | 2.853052 | -0.544679 | -5.947458 | -2.225116 | 19.890694 | 8.013278 | 15.460520 | 12.644874 | 16.005362 | 34.172222 | 11.744265 | 16.940769 | 16.479377 | 16.852904 | 15.087229 | 19.353409 | 
| ROW13 | -5.819226 | 7.506292 | -13.32552 | -1.028616 | -7.835064 | 2.015838 | 5.112128 | 15.316563 | 13.922075 | 4.640997 | 13.011579 | 11.744265 | 32.232246 | 3.497323 | 6.987132 | 14.939891 | 8.017477 | 16.176497 | 
| ROW14 | -7.923921 | -20.25523 | 12.331307 | 2.166987 | 0.143193 | -8.067114 | 22.211500 | 3.402771 | 9.416191 | 20.148062 | 11.403591 | 16.940769 | 3.497323 | 39.033719 | 24.424351 | 10.511581 | 11.413431 | 8.467573 | 
| ROW15 | -8.308871 | -14.38865 | 6.079782 | 1.693709 | -1.582116 | -6.726754 | 18.212837 | 8.752394 | 11.283292 | 15.631491 | 17.019335 | 16.479377 | 6.987132 | 24.424351 | 37.384723 | 13.762694 | 11.863274 | 11.625276 | 
| ROW16 | -7.684764 | -1.675587 | -6.009177 | -0.777573 | -7.353465 | -0.331299 | 12.178881 | 14.381787 | 16.569363 | 9.223941 | 19.219646 | 16.852904 | 14.939891 | 10.511581 | 13.762694 | 36.810579 | 10.745083 | 17.429099 | 
| ROW17 | -5.066929 | -3.547344 | -1.519585 | -3.393082 | -1.108852 | -3.958077 | 9.314516 | 9.330710 | 11.408635 | 10.216426 | 10.549007 | 15.087229 | 8.017477 | 11.413431 | 11.863274 | 10.745083 | 27.575226 | 11.710059 | 
| ROW18 | -7.495720 | 3.324370 | -10.82009 | -1.289042 | -7.801226 | 0.305506 | 10.000618 | 18.763251 | 15.019519 | 8.306272 | 16.724586 | 19.353409 | 16.176497 | 8.467573 | 11.625276 | 17.429099 | 11.710059 | 33.832558 | 
| ginvlhs | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7.010 | 5.981 | 1.029 | -9.493 | 3.773 | 3.237 | -8.098 | -8.149 | -5.528 | -4.653 | -7.283 | -8.173 | -5.819 | -7.924 | -8.309 | -7.685 | -5.067 | -7.496 | 
| 5.981 | 35.086 | -29.11 | -9.325 | -1.715 | 7.696 | -19.19 | 11.435 | 0.389 | -10.28 | -2.474 | -11.03 | 7.506 | -20.26 | -14.39 | -1.676 | -3.547 | 3.324 | 
| 1.029 | -29.11 | 30.134 | -0.168 | 5.488 | -4.459 | 11.094 | -19.58 | -5.916 | 5.630 | -4.809 | 2.853 | -13.33 | 12.331 | 6.080 | -6.009 | -1.520 | -10.82 | 
| -9.493 | -9.325 | -0.168 | 32.882 | -4.333 | -5.161 | 4.570 | 6.327 | -4.199 | -4.691 | -1.364 | -0.545 | -1.029 | 2.167 | 1.694 | -0.778 | -3.393 | -1.289 | 
| 3.773 | -1.715 | 5.488 | -4.333 | 7.776 | -4.002 | -4.326 | -5.034 | -2.797 | 0.814 | -6.515 | -5.947 | -7.835 | 0.143 | -1.582 | -7.353 | -1.109 | -7.801 | 
| 3.237 | 7.696 | -4.459 | -5.161 | -4.002 | 7.239 | -3.772 | -3.114 | -2.730 | -5.467 | -0.768 | -2.225 | 2.016 | -8.067 | -6.727 | -0.331 | -3.958 | 0.306 | 
| -8.098 | -19.19 | 11.094 | 4.570 | -4.326 | -3.772 | 32.308 | 1.152 | 6.525 | 13.572 | 15.065 | 19.891 | 5.112 | 22.211 | 18.213 | 12.179 | 9.315 | 10.001 | 
| -8.149 | 11.435 | -19.58 | 6.327 | -5.034 | -3.114 | 1.152 | 32.851 | 14.569 | 4.828 | 14.590 | 8.013 | 15.317 | 3.403 | 8.752 | 14.382 | 9.331 | 18.763 | 
| -5.528 | 0.389 | -5.916 | -4.199 | -2.797 | -2.730 | 6.525 | 14.569 | 25.773 | 9.547 | 12.024 | 15.461 | 13.922 | 9.416 | 11.283 | 16.569 | 11.409 | 15.020 | 
| -4.653 | -10.28 | 5.630 | -4.691 | 0.814 | -5.467 | 13.572 | 4.828 | 9.547 | 27.569 | 9.883 | 12.645 | 4.641 | 20.148 | 15.631 | 9.224 | 10.216 | 8.306 | 
| -7.283 | -2.474 | -4.809 | -1.364 | -6.515 | -0.768 | 15.065 | 14.590 | 12.024 | 9.883 | 27.929 | 16.005 | 13.012 | 11.404 | 17.019 | 19.220 | 10.549 | 16.725 | 
| -8.173 | -11.03 | 2.853 | -0.545 | -5.947 | -2.225 | 19.891 | 8.013 | 15.461 | 12.645 | 16.005 | 34.172 | 11.744 | 16.941 | 16.479 | 16.853 | 15.087 | 19.353 | 
| -5.819 | 7.506 | -13.33 | -1.029 | -7.835 | 2.016 | 5.112 | 15.317 | 13.922 | 4.641 | 13.012 | 11.744 | 32.232 | 3.497 | 6.987 | 14.940 | 8.017 | 16.176 | 
| -7.924 | -20.26 | 12.331 | 2.167 | 0.143 | -8.067 | 22.211 | 3.403 | 9.416 | 20.148 | 11.404 | 16.941 | 3.497 | 39.034 | 24.424 | 10.512 | 11.413 | 8.468 | 
| -8.309 | -14.39 | 6.080 | 1.694 | -1.582 | -6.727 | 18.213 | 8.752 | 11.283 | 15.631 | 17.019 | 16.479 | 6.987 | 24.424 | 37.385 | 13.763 | 11.863 | 11.625 | 
| -7.685 | -1.676 | -6.009 | -0.778 | -7.353 | -0.331 | 12.179 | 14.382 | 16.569 | 9.224 | 19.220 | 16.853 | 14.940 | 10.512 | 13.763 | 36.811 | 10.745 | 17.429 | 
| -5.067 | -3.547 | -1.520 | -3.393 | -1.109 | -3.958 | 9.315 | 9.331 | 11.409 | 10.216 | 10.549 | 15.087 | 8.017 | 11.413 | 11.863 | 10.745 | 27.575 | 11.710 | 
| -7.496 | 3.324 | -10.82 | -1.289 | -7.801 | 0.306 | 10.001 | 18.763 | 15.020 | 8.306 | 16.725 | 19.353 | 16.176 | 8.468 | 11.625 | 17.429 | 11.710 | 33.833 | 
| Compute gl = ginvlhs*lhs = matrix of expectations of solutions | 
| gl | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.500 | 0.250 | 0.250 | 0.000 | 0.250 | 0.250 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 
| 0.250 | 0.625 | -0.375 | 0.000 | 0.125 | 0.125 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 
| 0.250 | -0.375 | 0.625 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 
| 0.250 | 0.125 | 0.125 | -0.000 | 0.625 | -0.375 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 
| 0.250 | 0.125 | 0.125 | 0.000 | -0.375 | 0.625 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 
| -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 
| -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 
| -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 
| 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 
| -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 1.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 
| 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 1.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 
| -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | -0.000 | 
| 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 1.000 | 0.000 | -0.000 | -0.000 | 
| -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 | 
| -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | -0.000 | 
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 
| Notice that lg = gl (i.e., lhs*ginvlhs = lhs*ginvlhs) | 
| lg | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.500 | 0.250 | 0.250 | 0.000 | 0.250 | 0.250 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| 0.250 | 0.625 | -0.375 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| 0.250 | -0.375 | 0.625 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| -0.000 | 0.000 | -0.000 | 1.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| 0.250 | 0.125 | 0.125 | -0.000 | 0.625 | -0.375 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| 0.250 | 0.125 | 0.125 | 0.000 | -0.375 | 0.625 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 
| -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 
| 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 
| 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 
| -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 
| 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 
| -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 
| -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 
| -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 
| 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 | 
| 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 
| 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 
| Verify that lgl = lhs (i.e., lhs*ginvlhs*lhs = lhs => generalized inverse is correct) | 
| lgl | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.354 | 0.154 | 0.201 | 0.197 | 0.158 | 0.197 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 | 0.033 | 0.021 | 0.021 | 0.022 | 0.030 | 0.030 | 
| 0.154 | 0.092 | 0.062 | 0.095 | 0.082 | 0.071 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 | 0.008 | 0.016 | 0.013 | 0.011 | 0.011 | 0.011 | 
| 0.201 | 0.062 | 0.139 | 0.102 | 0.075 | 0.125 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 | 0.025 | 0.005 | 0.008 | 0.011 | 0.019 | 0.019 | 
| 0.197 | 0.095 | 0.102 | 0.156 | 0.092 | 0.105 | -0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 | 0.016 | 0.011 | 0.011 | 0.011 | 0.023 | 0.023 | 
| 0.158 | 0.082 | 0.075 | 0.092 | 0.158 | 0.000 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 | 0.033 | 0.000 | 0.000 | 0.022 | 0.000 | 0.030 | 
| 0.197 | 0.071 | 0.125 | 0.105 | -0.000 | 0.197 | -0.000 | 0.063 | 0.031 | 0.031 | -0.000 | -0.000 | -0.000 | 0.021 | 0.021 | 0.000 | 0.030 | -0.000 | 
| 0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.089 | 0.013 | 0.010 | -0.006 | -0.025 | -0.020 | 0.000 | -0.020 | 0.000 | -0.000 | 0.000 | -0.000 | 
| 0.062 | -0.000 | 0.063 | -0.000 | -0.000 | 0.063 | 0.013 | 0.117 | -0.017 | 0.000 | -0.025 | 0.011 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.022 | 
| 0.031 | 0.015 | 0.015 | 0.031 | -0.000 | 0.031 | 0.010 | -0.017 | 0.090 | 0.000 | 0.008 | -0.020 | -0.013 | 0.000 | 0.000 | -0.016 | 0.000 | -0.000 | 
| 0.031 | 0.015 | 0.015 | 0.031 | -0.000 | 0.031 | -0.006 | -0.000 | 0.000 | 0.073 | 0.000 | -0.000 | -0.000 | -0.020 | 0.000 | -0.000 | 0.000 | 0.000 | 
| 0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | -0.025 | -0.025 | 0.008 | 0.000 | 0.099 | 0.000 | 0.000 | 0.010 | -0.020 | -0.016 | -0.000 | -0.000 | 
| 0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | -0.020 | 0.011 | -0.020 | -0.000 | -0.000 | 0.080 | 0.000 | -0.000 | 0.000 | -0.000 | -0.015 | -0.022 | 
| 0.033 | 0.008 | 0.025 | 0.016 | 0.033 | 0.000 | 0.000 | 0.000 | -0.013 | 0.000 | -0.000 | -0.000 | 0.059 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 
| 0.021 | 0.016 | 0.005 | 0.011 | -0.000 | 0.021 | -0.020 | 0.000 | -0.000 | -0.020 | 0.010 | 0.000 | -0.000 | 0.072 | -0.020 | 0.000 | 0.000 | -0.000 | 
| 0.021 | 0.013 | 0.008 | 0.011 | 0.000 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | -0.020 | -0.000 | -0.000 | -0.020 | 0.060 | 0.000 | -0.000 | 0.000 | 
| 0.022 | 0.011 | 0.011 | 0.011 | 0.022 | 0.000 | -0.000 | 0.000 | -0.016 | -0.000 | -0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.054 | 0.000 | -0.000 | 
| 0.030 | 0.011 | 0.019 | 0.023 | -0.000 | 0.030 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.015 | 0.000 | 0.000 | -0.000 | -0.000 | 0.059 | -0.000 | 
| 0.030 | 0.011 | 0.019 | 0.023 | 0.030 | 0.000 | -0.000 | -0.022 | -0.000 | 0.000 | 0.000 | -0.022 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.073 | 
| Compute ranklhs = rank of the MME = trace of ginvlhs*lhs | 
| ranklhs | 
|---|
| 16 | 
| Compute sol = vector of solutions for the MME | 
| sol | 
|---|
| 132.92958 | 
| 76.625398 | 
| 56.304178 | 
| 7.3226024 | 
| 78.016381 | 
| 54.913195 | 
| 2.0823513 | 
| 0.6294069 | 
| -3.040196 | 
| 0.4273981 | 
| 3.8830874 | 
| -0.225963 | 
| -2.883137 | 
| 1.8791854 | 
| 5.1880816 | 
| -1.003531 | 
| 0.8301802 | 
| -0.031249 | 
| sol | 
|---|
| 132.93 | 
| 76.63 | 
| 56.30 | 
| 7.32 | 
| 78.02 | 
| 54.91 | 
| 2.08 | 
| 0.63 | 
| -3.04 | 
| 0.43 | 
| 3.88 | 
| -0.23 | 
| -2.88 | 
| 1.88 | 
| 5.19 | 
| -1.00 | 
| 0.83 | 
| -0.03 | 
| Compute sesol = standard error of solutions | 
| sesol | 
|---|
| 2.65 | 
| 5.92 | 
| 5.49 | 
| 5.73 | 
| 2.79 | 
| 2.69 | 
| 5.68 | 
| 5.73 | 
| 5.08 | 
| 5.25 | 
| 5.28 | 
| 5.85 | 
| 5.68 | 
| 6.25 | 
| 6.11 | 
| 6.07 | 
| 5.25 | 
| 5.82 | 
| Computation of Additive, Nonadditive, and Total Genetic Predictions | 
| Using matrix computations | 
| Define ka = coefficient matrix of multiple trait additive genetic predictions deviated from B | 
| ka | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
| ROW1 | 0 | 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW3 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW4 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW5 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW6 | 0 | 0.75 | -0.75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW7 | 0 | 0.25 | -0.25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| ROW8 | 0 | 0.75 | -0.75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| ROW9 | 0 | 0.625 | -0.625 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| ROW10 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| ROW11 | 0 | 0.375 | -0.375 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| ROW12 | 0 | 0.375 | -0.375 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| ka | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.75 | -0.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.25 | -0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.75 | -0.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.63 | -0.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 
| 0.00 | 0.38 | -0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 
| 0.00 | 0.38 | -0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 
| Compute kagl = ka*ginvlhs*lhs to check if functions in matrix ka are estimable | 
| (kagl = ka if functions in ka are estimable) | 
| kagl | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.00 | -0.00 | 0.00 | 1.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 1.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 1.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.75 | -0.75 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 1.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.25 | -0.25 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 1.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.75 | -0.75 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 1.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| 0.00 | 0.63 | -0.63 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | 0.00 | -0.00 | 
| 0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 
| -0.00 | 0.38 | -0.38 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | -0.00 | 
| 0.00 | 0.38 | -0.37 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 
| difkaglka | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 
| 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| Compute uaka = vector of multibreed additive genetic predictions | 
| uaka | 
|---|
| 22.40 | 
| 0.63 | 
| 7.12 | 
| 10.59 | 
| 14.04 | 
| 15.01 | 
| 2.20 | 
| 17.12 | 
| 17.89 | 
| 9.16 | 
| 8.45 | 
| 7.59 | 
| Compute vepuaka = matrix of variance of errors of additive genetic predictions | 
| vepuaka | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 95.16 | 32.17 | 59.40 | 44.23 | 63.97 | 75.87 | 49.23 | 59.48 | 55.96 | 63.08 | 42.22 | 59.07 | 
| 32.17 | 32.85 | 30.08 | 20.34 | 30.10 | 31.28 | 23.07 | 26.67 | 28.14 | 29.89 | 20.96 | 30.40 | 
| 59.40 | 30.08 | 62.94 | 35.60 | 47.20 | 59.54 | 41.34 | 44.14 | 43.56 | 52.75 | 35.90 | 47.60 | 
| 44.23 | 20.34 | 35.60 | 42.51 | 33.95 | 40.06 | 26.51 | 38.21 | 34.02 | 34.29 | 26.38 | 32.55 | 
| 63.97 | 30.10 | 47.20 | 33.95 | 61.12 | 57.10 | 39.44 | 43.15 | 46.82 | 53.41 | 33.55 | 47.82 | 
| 75.87 | 31.28 | 59.54 | 40.06 | 57.10 | 82.78 | 47.04 | 51.52 | 50.31 | 59.45 | 43.08 | 59.47 | 
| 49.23 | 23.07 | 41.34 | 26.51 | 39.44 | 47.04 | 50.36 | 34.12 | 34.18 | 41.87 | 26.89 | 39.10 | 
| 59.48 | 26.67 | 44.14 | 38.21 | 43.15 | 51.52 | 34.12 | 59.58 | 46.56 | 43.75 | 32.39 | 41.57 | 
| 55.96 | 28.14 | 43.56 | 34.02 | 46.82 | 50.31 | 34.18 | 46.56 | 60.01 | 44.81 | 31.85 | 41.72 | 
| 63.08 | 29.89 | 52.75 | 34.29 | 53.41 | 59.45 | 41.87 | 43.75 | 44.81 | 72.00 | 34.50 | 49.27 | 
| 42.22 | 20.96 | 35.90 | 26.38 | 33.55 | 43.08 | 26.89 | 32.39 | 31.85 | 34.50 | 43.41 | 33.61 | 
| 59.07 | 30.40 | 47.60 | 32.55 | 47.82 | 59.47 | 39.10 | 41.57 | 41.72 | 49.27 | 33.61 | 61.80 | 
| Compute sepuaka = vector of standard errors of additive genetic predictions | 
| sepuaka | 
|---|
| 9.76 | 
| 5.73 | 
| 7.93 | 
| 6.52 | 
| 7.82 | 
| 9.10 | 
| 7.10 | 
| 7.72 | 
| 7.75 | 
| 8.49 | 
| 6.59 | 
| 7.86 | 
| Define kn = coefficient matrix of direct and maternal nonadditive genetic predictions | 
| Assume that males will be mated to (1/2A 1/2B) females and viceversa | 
| kn | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
| ROW1 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW2 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW3 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW4 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW5 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW6 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW7 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW8 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW9 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW10 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW11 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW12 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| kn | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| Compute kngl = kn*ginvlhs*lhs to check if functions in matrix kn are estimable | 
| (kngl = kn if functions in kn are estimable) | 
| kngl | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| difknglkn | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 
| Compute uakn = vector of multibreed nonadditive genetic predictions | 
| uakn | 
|---|
| 3.66 | 
| 3.66 | 
| 3.66 | 
| 3.66 | 
| 3.66 | 
| 3.66 | 
| 3.66 | 
| 3.66 | 
| 3.66 | 
| 3.66 | 
| 3.66 | 
| 3.66 | 
| Compute vepuakn = matrix of variance of errors of nonadditive genetic predictions | 
| vepuakn | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 
| Compute sepuakn = vector of standard errors of nonadditive genetic predictions | 
| sepuakn | 
|---|
| 2.87 | 
| 2.87 | 
| 2.87 | 
| 2.87 | 
| 2.87 | 
| 2.87 | 
| 2.87 | 
| 2.87 | 
| 2.87 | 
| 2.87 | 
| 2.87 | 
| 2.87 | 
| Define kt = coefficient matrix of total direct and maternal genetic predictions | 
| Assume that males will be mated to (1/2A 1/2B) females and viceversa | 
| kt | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
| ROW1 | 0 | 1 | -1 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW2 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW3 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW4 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW5 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW6 | 0 | 0.75 | -0.75 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| ROW7 | 0 | 0.25 | -0.25 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| ROW8 | 0 | 0.75 | -0.75 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| ROW9 | 0 | 0.625 | -0.625 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| ROW10 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| ROW11 | 0 | 0.375 | -0.375 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| ROW12 | 0 | 0.375 | -0.375 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| kt | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00 | 1.00 | -1.00 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.75 | -0.75 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.25 | -0.25 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.75 | -0.75 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.63 | -0.63 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 
| 0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 
| 0.00 | 0.38 | -0.38 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 
| 0.00 | 0.38 | -0.38 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 
| Compute ktgl = kt*ginvlhs*lhs to check if functions in matrix kt are estimable | 
| (ktgl = kt if functions in kt are estimable) | 
| ktgl | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | 1.00 | -1.00 | 0.50 | -0.00 | 0.00 | 1.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | 1.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 
| -0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 1.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.75 | -0.75 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 1.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.25 | -0.25 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 1.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.75 | -0.75 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 1.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| 0.00 | 0.63 | -0.63 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | 0.00 | -0.00 | 
| -0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 | 
| -0.00 | 0.38 | -0.38 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | -0.00 | 
| 0.00 | 0.38 | -0.38 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 
| difktglkt | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 
| -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 
| 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 
| Compute uakt = vector of multibreed total genetic predictions | 
| uakt | 
|---|
| 26.06 | 
| 4.29 | 
| 10.78 | 
| 14.25 | 
| 17.70 | 
| 18.68 | 
| 5.86 | 
| 20.78 | 
| 21.55 | 
| 12.82 | 
| 12.11 | 
| 11.25 | 
| Compute vepuakt = matrix of variance of errors of total genetic predictions | 
| vepuakt | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 98.80 | 41.26 | 60.94 | 45.52 | 66.93 | 78.09 | 53.50 | 63.06 | 59.87 | 66.33 | 44.73 | 62.64 | 
| 41.26 | 47.40 | 37.07 | 27.09 | 38.51 | 38.95 | 32.80 | 35.70 | 37.51 | 38.60 | 28.93 | 39.42 | 
| 60.94 | 37.07 | 62.38 | 34.80 | 48.06 | 59.66 | 43.52 | 45.62 | 45.38 | 53.90 | 36.32 | 49.07 | 
| 45.52 | 27.09 | 34.80 | 41.47 | 34.57 | 39.94 | 28.43 | 39.44 | 35.60 | 35.20 | 26.55 | 33.78 | 
| 66.93 | 38.51 | 48.06 | 34.57 | 63.40 | 58.65 | 43.03 | 46.05 | 50.05 | 55.98 | 35.39 | 50.70 | 
| 78.09 | 38.95 | 59.66 | 39.94 | 58.65 | 83.59 | 49.90 | 53.69 | 52.81 | 61.29 | 44.18 | 61.62 | 
| 53.50 | 32.80 | 43.52 | 28.43 | 43.03 | 49.90 | 55.27 | 38.33 | 38.72 | 45.75 | 30.04 | 43.30 | 
| 63.06 | 35.70 | 45.62 | 39.44 | 46.05 | 53.69 | 38.33 | 63.10 | 50.42 | 46.95 | 34.84 | 45.08 | 
| 59.87 | 37.51 | 45.38 | 35.60 | 50.05 | 52.81 | 38.72 | 50.42 | 64.21 | 48.34 | 34.64 | 45.56 | 
| 66.33 | 38.60 | 53.90 | 35.20 | 55.98 | 61.29 | 45.75 | 46.95 | 48.34 | 74.87 | 36.63 | 52.45 | 
| 44.73 | 28.93 | 36.32 | 26.55 | 35.39 | 44.18 | 30.04 | 34.84 | 34.64 | 36.63 | 44.81 | 36.06 | 
| 62.64 | 39.42 | 49.07 | 33.78 | 50.70 | 61.62 | 43.30 | 45.08 | 45.56 | 52.45 | 36.06 | 65.30 | 
| Compute sepuakt = vector of standard errors of total genetic predictions | 
| sepuakt | 
|---|
| 9.94 | 
| 6.88 | 
| 7.90 | 
| 6.44 | 
| 7.96 | 
| 9.14 | 
| 7.43 | 
| 7.94 | 
| 8.01 | 
| 8.65 | 
| 6.69 | 
| 8.08 |