GEV_03_GENETIC-GENOMIC MODELS_COMPLETE OR MISSING GENOTYPES_October-31-2014_a November 1, 2014 |
INPUT DATA FILE |
Obs | animal | sire | dam | afa | afb | sfa | sfb | dfa | dfb | mgsfa | mgsfb | mgdfa | mgdfb | sex | bw | ww | snp01 | snp02 | snp03 | snp04 | snp05 | snp06 | snp07 | snp08 | snp09 | snp10 | snp11 | snp12 | snp13 | snp14 | snp15 | snp16 | snp17 | snp18 | snp19 | snp20 | snp21 | snp22 | snp23 | snp24 | snp25 | snp26 | snp27 | snp28 | snp29 | snp30 | snp31 | snp32 | snp33 | snp34 | snp35 | snp36 | snp37 | snp38 | snp39 | snp40 | snp41 | snp42 | snp43 | snp44 | snp45 | snp46 | snp47 | snp48 | snp49 | snp50 | snp51 | snp52 | snp53 | snp54 | snp55 | snp56 | snp57 | snp58 | snp59 | snp60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 1.000 | 0.000 | 1.00 | 0.00 | 1.00 | 0.00 | 1 | 0 | 1.0 | 0.0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
2 | 2 | 0 | 0 | 0.000 | 1.000 | 0.00 | 1.00 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
3 | 3 | 0 | 2 | 0.500 | 0.500 | 1.00 | 0.00 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
4 | 4 | 1 | 0 | 0.500 | 0.500 | 1.00 | 0.00 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
5 | 5 | 1 | 2 | 0.500 | 0.500 | 1.00 | 0.00 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
6 | 6 | 1 | 3 | 0.750 | 0.250 | 1.00 | 0.00 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
7 | 7 | 0 | 3 | 0.250 | 0.750 | 0.00 | 1.00 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 1 | 28 | 272 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
8 | 8 | 1 | 4 | 0.750 | 0.250 | 1.00 | 0.00 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 2 | 31 | 264 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
9 | 9 | 5 | 8 | 0.625 | 0.375 | 0.50 | 0.50 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 2 | 30 | 270 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
10 | 10 | 5 | 3 | 0.500 | 0.500 | 0.50 | 0.50 | 0.50 | 0.50 | 1 | 0 | 0.0 | 1.0 | 1 | 33 | 278 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
11 | 11 | 6 | 0 | 0.375 | 0.625 | 0.75 | 0.25 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 2 | 27 | 259 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
12 | 12 | 6 | 2 | 0.375 | 0.625 | 0.75 | 0.25 | 0.00 | 1.00 | 0 | 1 | 0.0 | 1.0 | 1 | 32 | 280 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
GEV_03_GENETIC-GENOMIC MODELS_COMPLETE OR MISSING GENOTYPES_October-31-2014_a November 1, 2014 |
Model_30_Animal_GEV_03_1T_Polygenic_October-31-2014_a November 1, 2014 |
GENETIC AND GENOMIC EVALUATION NOTES |
CHAPTER GEV_03 ALL MODELS |
MULTIPLE TRAIT GENETIC AND GENOMIC MODELS WITH: |
1) UNEQUAL RESIDUAL, ADDITIVE GENETIC, AND NONADDITIVE GENETIC COVARIANCE MATRICES ACROSS BREED GROUPS |
2) EQUAL RESIDUAL COVARIANCE MATRIX, UNEQUAL ADDITIVE AND NONADDITIVE GENETIC COVARIANCE MATRICES |
3) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, UNEQUAL NONADDITIVE GENETIC COVARIANCE MATRICES |
4) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, NO RANDOM NONADDITIVE GENETIC EFFECTS |
Mauricio A. Elzo, University of Florida, maelzo@ufl.edu |
Read input dataset (SAS file) |
datmat = matrix of input data |
datmat | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | COL19 | COL20 | COL21 | COL22 | COL23 | COL24 | COL25 | COL26 | COL27 | COL28 | COL29 | COL30 | COL31 | COL32 | COL33 | COL34 | COL35 | COL36 | COL37 | COL38 | COL39 | COL40 | COL41 | COL42 | COL43 | COL44 | COL45 | COL46 | COL47 | COL48 | COL49 | COL50 | COL51 | COL52 | COL53 | COL54 | COL55 | COL56 | COL57 | COL58 | COL59 | COL60 | COL61 | COL62 | COL63 | COL64 | COL65 | COL66 | COL67 | COL68 | COL69 | COL70 | COL71 | COL72 | COL73 | COL74 | COL75 | COL76 | |
ROW1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 33 | 289 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
ROW2 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 29 | 245 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
ROW3 | 3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 32 | 256 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
ROW4 | 4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 30 | 261 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 1 |
ROW5 | 5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 38 | 292 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 1 |
ROW6 | 6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 35 | 286 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 |
ROW7 | 7 | 0 | 3 | 0.25 | 0.75 | 0 | 1 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 28 | 272 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
ROW8 | 8 | 1 | 4 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 2 | 31 | 264 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
ROW9 | 9 | 5 | 8 | 0.625 | 0.375 | 0.5 | 0.5 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 2 | 30 | 270 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
ROW10 | 10 | 5 | 3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 1 | 33 | 278 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
ROW11 | 11 | 6 | 0 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 27 | 259 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
ROW12 | 12 | 6 | 2 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 32 | 280 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
Read allele frequencies input dataset (SAS file) |
ntsnp |
---|
60 |
snpfreq | |
---|---|
1 | 0.1509 |
2 | 0.4252 |
3 | 0.1842 |
4 | 0.5314 |
5 | 0.6242 |
6 | 0.4292 |
7 | 0.2036 |
8 | 0.3518 |
9 | 0.5454 |
10 | 0.1048 |
11 | 0.3338 |
12 | 0.3284 |
13 | 0.006 |
14 | 0.502 |
15 | 0.2263 |
16 | 0.4706 |
17 | 0.0808 |
18 | 0.7216 |
19 | 0.026 |
20 | 0.3271 |
21 | 0.8718 |
22 | 0.0948 |
23 | 0.3825 |
24 | 0.0561 |
25 | 0.5401 |
26 | 0.6809 |
27 | 0.785 |
28 | 0.3758 |
29 | 0.0067 |
30 | 0.7891 |
31 | 0.0581 |
32 | 0.1429 |
33 | 0.6041 |
34 | 0.7196 |
35 | 0.9386 |
36 | 0.6335 |
37 | 0.4312 |
38 | 0.0033 |
39 | 0.2717 |
40 | 0.2203 |
41 | 0.5794 |
42 | 0.2023 |
43 | 0.5134 |
44 | 0.755 |
45 | 0.5648 |
46 | 0.518 |
47 | 0.3458 |
48 | 0.4806 |
49 | 0.3258 |
50 | 0.3117 |
51 | 0.7503 |
52 | 0.4132 |
53 | 0.743 |
54 | 0.6061 |
55 | 0.9933 |
56 | 0.7377 |
57 | 0.9399 |
58 | 0.4419 |
59 | 0.1295 |
60 | 0.0928 |
Enter Parameters for Current Run |
Enter restronsol = 1 to impose restrictions on solutions to solve the MME, else = 0 if not |
restronsol |
---|
0 |
No restrictions imposed on solutions to solve MME |
Enter nt = Number of traits |
nt |
---|
1 |
Enter nfixpol = Number of fixed environmental and polygenic genetic effects |
nfixpol |
---|
6 |
Define nbr for the computation of gene content |
nbr |
---|
2 |
Enter nrec = Number of records |
nrec |
---|
12 |
Enter number of first non-genotyped animal (non-genotyped animals are last in the datafile) |
nongenanim1 |
---|
7 |
Enter nanim = Number of animals |
nanim |
---|
12 |
Enter 1 if model combines additive genetic and genomic relationships, else enter 0 |
Enter nsnp = number of fixed marker locus genomic effects in the model |
nsnp |
---|
0 |
Enter 1 if random marker genomic effects in the model, else enter zero |
ranma |
---|
0 |
Enter 1 if random additive polygenic genetic effects in the model, else enter zero |
addpol |
---|
1 |
Enter 1 if random additive genomic marker effects in the model, else enter zero |
addma |
---|
0 |
Enter 1 if random nonadditive polygenic genetic effects in the model, else enter zero |
nadpol |
---|
0 |
Enter 1 if zma values are [0,1,2] if zma values are [VanRaden(2009)] |
zmaval |
---|
1 |
Enter 1 if igenomebv are to be computed, else enter zero |
Enter 1 if icompmissgenot are to be computed, else enter zero |
Compute nf = Number of equations for fixed effects in the MME |
nf |
---|
6 |
Compute nma = Number of equations for marker locus additive genetic effects in the MME |
nma |
---|
0 |
Compute nga = Number of equations for random animal additive polygenic effects in the MME |
nga |
---|
12 |
nga |
---|
12 |
Compute ngn = Number of equations for random polygenic nonadditive genetic effects in the MME |
ngn |
---|
0 |
Compute neq = nf+nma+nga+ngn = total number of equations in the MME |
neq |
---|
18 |
Define pedigf = pedigree file with breed composition of animals, sires, and dams |
pedigf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
7 | 0 | 3 | 0.25 | 0.75 | 0 | 1 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
8 | 1 | 4 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
9 | 5 | 8 | 0.625 | 0.375 | 0.5 | 0.5 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 |
10 | 5 | 3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
11 | 6 | 0 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 |
12 | 6 | 2 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 |
Construct xf = matrix of fixed and random effects |
Construct fixed effects in matrix xf |
Construct random polygenic additive genetic effects in matrix xf |
xf | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
ROW1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW3 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW4 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW5 | 1 | 0.5 | 0.5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW6 | 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW7 | 1 | 0.25 | 0.75 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
ROW8 | 1 | 0.75 | 0.25 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
ROW9 | 1 | 0.625 | 0.375 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
ROW10 | 1 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
ROW11 | 1 | 0.375 | 0.625 | 0.75 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
ROW12 | 1 | 0.375 | 0.625 | 0.75 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Make x = xf, i.e., use computed xf |
x | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
ROW1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW3 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW4 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW5 | 1 | 0.5 | 0.5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW6 | 1 | 0.75 | 0.25 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW7 | 1 | 0.25 | 0.75 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
ROW8 | 1 | 0.75 | 0.25 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
ROW9 | 1 | 0.625 | 0.375 | 0.5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
ROW10 | 1 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
ROW11 | 1 | 0.375 | 0.625 | 0.75 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
ROW12 | 1 | 0.375 | 0.625 | 0.75 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Enter intrabreed and interbreed environmental variances |
veaa | vebb | veab |
---|---|---|
49 | 16 | 25 |
Compute vef = block-diagonal matrix of multibreed residual covariance matrices for individual animals |
pedigf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
3 | 0 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
4 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
5 | 1 | 2 | 0.5 | 0.5 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
6 | 1 | 3 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
7 | 0 | 3 | 0.25 | 0.75 | 0 | 1 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
8 | 1 | 4 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
9 | 5 | 8 | 0.625 | 0.375 | 0.5 | 0.5 | 0.75 | 0.25 | 1 | 0 | 0.5 | 0.5 |
10 | 5 | 3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0 | 0 | 1 |
11 | 6 | 0 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 |
12 | 6 | 2 | 0.375 | 0.625 | 0.75 | 0.25 | 0 | 1 | 0 | 1 | 0 | 1 |
vef | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 30.5 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47.5625 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.0625 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.0625 |
Make r = vef |
r = block-diagonal matrix of residual covariance matrices for individual animals |
r | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 30.5 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47.5625 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.0625 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.0625 |
invr = inverse of block-diagonal matrix of residual covariance matrices for individual animals |
invr | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.0204082 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0625 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0.0327869 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.021025 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0222222 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 |
Read yf = vector of records |
yf |
---|
289 |
245 |
256 |
261 |
292 |
286 |
272 |
264 |
270 |
278 |
259 |
280 |
Make y = yf, i.e., use read yf |
y |
---|
289 |
245 |
256 |
261 |
292 |
286 |
272 |
264 |
270 |
278 |
259 |
280 |
Compute xtinvr = x transpose times r |
xtinvr | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 | 0.0327869 | 0.0212766 | 0.021025 | 0.0222222 | 0.0302457 | 0.0302457 |
0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 | 0.0081967 | 0.0159574 | 0.0131406 | 0.0111111 | 0.0113422 | 0.0113422 |
0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 | 0.0245902 | 0.0053191 | 0.0078844 | 0.0111111 | 0.0189036 | 0.0189036 |
0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 | 0.0163934 | 0.0106383 | 0.0105125 | 0.0111111 | 0.0226843 | 0.0226843 |
0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 | 0.0327869 | 0 | 0 | 0.0222222 | 0 | 0.0302457 |
0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0.0212766 | 0.021025 | 0 | 0.0302457 | 0 |
0.0204082 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0625 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0.0327869 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.021025 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0222222 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 |
Compute xtinvrx = x transpose times r times x |
xtinvrx | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
ROW1 | 0.3542946 | 0.1536096 | 0.200685 | 0.1969699 | 0.1577088 | 0.1965858 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 | 0.0327869 | 0.0212766 | 0.021025 | 0.0222222 | 0.0302457 | 0.0302457 |
ROW2 | 0.1536096 | 0.0917455 | 0.0618642 | 0.0953487 | 0.0824002 | 0.0712094 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 | 0.0081967 | 0.0159574 | 0.0131406 | 0.0111111 | 0.0113422 | 0.0113422 |
ROW3 | 0.200685 | 0.0618642 | 0.1388208 | 0.1016212 | 0.0753086 | 0.1253763 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 | 0.0245902 | 0.0053191 | 0.0078844 | 0.0111111 | 0.0189036 | 0.0189036 |
ROW4 | 0.1969699 | 0.0953487 | 0.1016212 | 0.155981 | 0.0915964 | 0.1053736 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 | 0.0163934 | 0.0106383 | 0.0105125 | 0.0111111 | 0.0226843 | 0.0226843 |
ROW5 | 0.1577088 | 0.0824002 | 0.0753086 | 0.0915964 | 0.1577088 | 0 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 | 0.0327869 | 0 | 0 | 0.0222222 | 0 | 0.0302457 |
ROW6 | 0.1965858 | 0.0712094 | 0.1253763 | 0.1053736 | 0 | 0.1965858 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0.0212766 | 0.021025 | 0 | 0.0302457 | 0 |
ROW7 | 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0204082 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW8 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW9 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW10 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW11 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0.0307692 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW12 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW13 | 0.0327869 | 0.0081967 | 0.0245902 | 0.0163934 | 0.0327869 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0327869 | 0 | 0 | 0 | 0 | 0 |
ROW14 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0 | 0.0212766 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0212766 | 0 | 0 | 0 | 0 |
ROW15 | 0.021025 | 0.0131406 | 0.0078844 | 0.0105125 | 0 | 0.021025 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.021025 | 0 | 0 | 0 |
ROW16 | 0.0222222 | 0.0111111 | 0.0111111 | 0.0111111 | 0.0222222 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0222222 | 0 | 0 |
ROW17 | 0.0302457 | 0.0113422 | 0.0189036 | 0.0226843 | 0 | 0.0302457 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 | 0 |
ROW18 | 0.0302457 | 0.0113422 | 0.0189036 | 0.0226843 | 0.0302457 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0302457 |
Enter intrabreed and interbreed additive genetic covariance matrices |
vaaa | vabb | vaab |
---|---|---|
36 | 44 | 22 |
Compute the inverse of the additive polygenic covariance matrix |
Compute vaf = multibreed additive genetic covariance matrices for individual animals |
vaf | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 43.5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 47.5 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48.625 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45.125 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45.125 |
Compute diagonals of additive relationship matrix |
Animals MUST be ordered from oldest to youngest |
Base animals have unknown parents |
Additive relationship of each animal with itself |
addrel |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1.25 |
1.1875 |
1.125 |
1 |
1.125 |
Compute daf = block-diagonal matrix of residual additive genetic covariance matrices |
Recall: (Ga)-1 = (I - 1/2 P') (Block-diagonal Da)-1 (I - 1/2 P) for [dai]-1 blocks |
Accounting for multibreed inbreeding completely (Elzo, 1990) |
i | sqvii | vii | |
---|---|---|---|
animal i | 1 | 36 | 6 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 1 | 6 | 6 | 36 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 2 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 3 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 4 | 3 | 3 | 9 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 5 | 3 | 3 | 9 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 6 | 3 | 3 | 9 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 7 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 8 | 4.5 | 4.5 | 20.25 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 9 | 3.75 | 3.75 | 14.0625 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 10 | 1.5 | 1.5 | 2.25 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 11 | 1.5 | 1.5 | 2.25 |
i | j | tvii | vii | uii |
---|---|---|---|---|
1 | 12 | 1.5 | 1.5 | 2.25 |
i | j | vmat | umat |
---|---|---|---|
1 | 13 | 6 | 36 |
0 | 0 | ||
0 | 0 | ||
3 | 9 | ||
3 | 9 | ||
3 | 9 | ||
0 | 0 | ||
4.5 | 20.25 | ||
3.75 | 14.0625 | ||
1.5 | 2.25 | ||
1.5 | 2.25 | ||
1.5 | 2.25 |
i | sqvii | vii | |
---|---|---|---|
animal i | 2 | 44 | 6.6332496 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 2 | 6.6332496 | 6.6332496 | 44 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 3 | 3.3166248 | 3.3166248 | 11 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 4 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 5 | 3.3166248 | 3.3166248 | 11 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 6 | 1.6583124 | 1.6583124 | 2.75 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 7 | 1.6583124 | 1.6583124 | 2.75 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 8 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 9 | 1.6583124 | 1.6583124 | 2.75 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 10 | 3.3166248 | 3.3166248 | 11 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 11 | 0.8291562 | 0.8291562 | 0.6875 |
i | j | tvii | vii | uii |
---|---|---|---|---|
2 | 12 | 4.145781 | 4.145781 | 17.1875 |
i | j | vmat | umat |
---|---|---|---|
2 | 13 | 6 | 36 |
6.6332496 | 44 | ||
3.3166248 | 11 | ||
0 | 9 | ||
3.3166248 | 20 | ||
1.6583124 | 11.75 | ||
1.6583124 | 2.75 | ||
0 | 20.25 | ||
1.6583124 | 16.8125 | ||
3.3166248 | 13.25 | ||
0.8291562 | 2.9375 | ||
4.145781 | 19.4375 |
i | sqvii | vii | |
---|---|---|---|
animal i | 3 | 29 | 5.3851648 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 3 | 5.3851648 | 5.3851648 | 29 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 4 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 5 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 6 | 2.6925824 | 2.6925824 | 7.25 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 7 | 2.6925824 | 2.6925824 | 7.25 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 8 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 9 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 10 | 2.6925824 | 2.6925824 | 7.25 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 11 | 1.3462912 | 1.3462912 | 1.8125 |
i | j | tvii | vii | uii |
---|---|---|---|---|
3 | 12 | 1.3462912 | 1.3462912 | 1.8125 |
i | j | vmat | umat |
---|---|---|---|
3 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
0 | 9 | ||
0 | 20 | ||
2.6925824 | 19 | ||
2.6925824 | 10 | ||
0 | 20.25 | ||
0 | 16.8125 | ||
2.6925824 | 20.5 | ||
1.3462912 | 4.75 | ||
1.3462912 | 21.25 |
i | sqvii | vii | |
---|---|---|---|
animal i | 4 | 31 | 5.5677644 |
i | j | tvii | vii | uii |
---|---|---|---|---|
4 | 4 | 5.5677644 | 5.5677644 | 31 |
i | j | tvii | vii | uii |
---|---|---|---|---|
4 | 5 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
4 | 6 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
4 | 7 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
4 | 8 | 2.7838822 | 2.7838822 | 7.75 |
i | j | tvii | vii | uii |
---|---|---|---|---|
4 | 9 | 1.3919411 | 1.3919411 | 1.9375 |
i | j | tvii | vii | uii |
---|---|---|---|---|
4 | 10 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
4 | 11 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
4 | 12 | 0 | 0 | 0 |
i | j | vmat | umat |
---|---|---|---|
4 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
5.5677644 | 40 | ||
0 | 20 | ||
0 | 19 | ||
0 | 10 | ||
2.7838822 | 28 | ||
1.3919411 | 18.75 | ||
0 | 20.5 | ||
0 | 4.75 | ||
0 | 21.25 |
i | sqvii | vii | |
---|---|---|---|
animal i | 5 | 20 | 4.472136 |
i | j | tvii | vii | uii |
---|---|---|---|---|
5 | 5 | 4.472136 | 4.472136 | 20 |
i | j | tvii | vii | uii |
---|---|---|---|---|
5 | 6 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
5 | 7 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
5 | 8 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
5 | 9 | 2.236068 | 2.236068 | 5 |
i | j | tvii | vii | uii |
---|---|---|---|---|
5 | 10 | 2.236068 | 2.236068 | 5 |
i | j | tvii | vii | uii |
---|---|---|---|---|
5 | 11 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
5 | 12 | 0 | 0 | 0 |
i | j | vmat | umat |
---|---|---|---|
5 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
5.5677644 | 40 | ||
4.472136 | 40 | ||
0 | 19 | ||
0 | 10 | ||
0 | 28 | ||
2.236068 | 23.75 | ||
2.236068 | 25.5 | ||
0 | 4.75 | ||
0 | 21.25 |
i | sqvii | vii | |
---|---|---|---|
animal i | 6 | 24.5 | 4.9497475 |
i | j | tvii | vii | uii |
---|---|---|---|---|
6 | 6 | 4.9497475 | 4.9497475 | 24.5 |
i | j | tvii | vii | uii |
---|---|---|---|---|
6 | 7 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
6 | 8 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
6 | 9 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
6 | 10 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
6 | 11 | 2.4748737 | 2.4748737 | 6.125 |
i | j | tvii | vii | uii |
---|---|---|---|---|
6 | 12 | 2.4748737 | 2.4748737 | 6.125 |
i | j | vmat | umat |
---|---|---|---|
6 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
5.5677644 | 40 | ||
4.472136 | 40 | ||
4.9497475 | 43.5 | ||
0 | 10 | ||
0 | 28 | ||
0 | 23.75 | ||
0 | 25.5 | ||
2.4748737 | 10.875 | ||
2.4748737 | 27.375 |
i | sqvii | vii | |
---|---|---|---|
animal i | 7 | 37.5 | 6.1237244 |
i | j | tvii | vii | uii |
---|---|---|---|---|
7 | 7 | 6.1237244 | 6.1237244 | 37.5 |
i | j | tvii | vii | uii |
---|---|---|---|---|
7 | 8 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
7 | 9 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
7 | 10 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
7 | 11 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
7 | 12 | 0 | 0 | 0 |
i | j | vmat | umat |
---|---|---|---|
7 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
5.5677644 | 40 | ||
4.472136 | 40 | ||
4.9497475 | 43.5 | ||
6.1237244 | 47.5 | ||
0 | 28 | ||
0 | 23.75 | ||
0 | 25.5 | ||
0 | 10.875 | ||
0 | 27.375 |
i | sqvii | vii | |
---|---|---|---|
animal i | 8 | 24.5 | 4.9497475 |
i | j | tvii | vii | uii |
---|---|---|---|---|
8 | 8 | 4.9497475 | 4.9497475 | 24.5 |
i | j | tvii | vii | uii |
---|---|---|---|---|
8 | 9 | 2.4748737 | 2.4748737 | 6.125 |
i | j | tvii | vii | uii |
---|---|---|---|---|
8 | 10 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
8 | 11 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
8 | 12 | 0 | 0 | 0 |
i | j | vmat | umat |
---|---|---|---|
8 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
5.5677644 | 40 | ||
4.472136 | 40 | ||
4.9497475 | 43.5 | ||
6.1237244 | 47.5 | ||
4.9497475 | 52.5 | ||
2.4748737 | 29.875 | ||
0 | 25.5 | ||
0 | 10.875 | ||
0 | 27.375 |
i | sqvii | vii | |
---|---|---|---|
animal i | 9 | 25.5 | 5.0497525 |
i | j | tvii | vii | uii |
---|---|---|---|---|
9 | 9 | 5.0497525 | 5.0497525 | 25.5 |
i | j | tvii | vii | uii |
---|---|---|---|---|
9 | 10 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
9 | 11 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
9 | 12 | 0 | 0 | 0 |
i | j | vmat | umat |
---|---|---|---|
9 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
5.5677644 | 40 | ||
4.472136 | 40 | ||
4.9497475 | 43.5 | ||
6.1237244 | 47.5 | ||
4.9497475 | 52.5 | ||
5.0497525 | 55.375 | ||
0 | 25.5 | ||
0 | 10.875 | ||
0 | 27.375 |
i | sqvii | vii | |
---|---|---|---|
animal i | 10 | 31 | 5.5677644 |
i | j | tvii | vii | uii |
---|---|---|---|---|
10 | 10 | 5.5677644 | 5.5677644 | 31 |
i | j | tvii | vii | uii |
---|---|---|---|---|
10 | 11 | 0 | 0 | 0 |
i | j | tvii | vii | uii |
---|---|---|---|---|
10 | 12 | 0 | 0 | 0 |
i | j | vmat | umat |
---|---|---|---|
10 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
5.5677644 | 40 | ||
4.472136 | 40 | ||
4.9497475 | 43.5 | ||
6.1237244 | 47.5 | ||
4.9497475 | 52.5 | ||
5.0497525 | 55.375 | ||
5.5677644 | 56.5 | ||
0 | 10.875 | ||
0 | 27.375 |
i | sqvii | vii | |
---|---|---|---|
animal i | 11 | 34.25 | 5.85235 |
i | j | tvii | vii | uii |
---|---|---|---|---|
11 | 11 | 5.85235 | 5.85235 | 34.25 |
i | j | tvii | vii | uii |
---|---|---|---|---|
11 | 12 | 0 | 0 | 0 |
i | j | vmat | umat |
---|---|---|---|
11 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
5.5677644 | 40 | ||
4.472136 | 40 | ||
4.9497475 | 43.5 | ||
6.1237244 | 47.5 | ||
4.9497475 | 52.5 | ||
5.0497525 | 55.375 | ||
5.5677644 | 56.5 | ||
5.85235 | 45.125 | ||
0 | 27.375 |
i | sqvii | vii | |
---|---|---|---|
animal i | 12 | 23.25 | 4.8218254 |
i | j | tvii | vii | uii |
---|---|---|---|---|
12 | 12 | 4.8218254 | 4.8218254 | 23.25 |
i | j | vmat | umat |
---|---|---|---|
12 | 13 | 6 | 36 |
6.6332496 | 44 | ||
5.3851648 | 40 | ||
5.5677644 | 40 | ||
4.472136 | 40 | ||
4.9497475 | 43.5 | ||
6.1237244 | 47.5 | ||
4.9497475 | 52.5 | ||
5.0497525 | 55.375 | ||
5.5677644 | 56.5 | ||
5.85235 | 45.125 | ||
4.8218254 | 50.625 |
Block-diagonal matrix da for populations with inbred animals |
da | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 24.5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 37.5 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 24.5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25.5 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34.25 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23.25 |
Compute dainv = inverse of da |
dainv = inverse of block-diagonal matrix of residual additive genetic covariance matrices |
dainv | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.0277778 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0.0227273 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0.0344828 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0.0322581 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0.0408163 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0.0266667 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0408163 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0392157 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0322581 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0291971 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0430108 |
Compute gainv = inverse of the matrix of multibreed additive genetic covariances |
Using algorithm to compute gainv directly; Elzo (1990a),JAS 68:1215-1228 |
gainv | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.0687505 | 0.0125 | 0.0102041 | -0.005925 | -0.025 | -0.020408 | 0 | -0.020408 | 0 | 0 | 0 | 0 |
0.0125 | 0.0546007 | -0.017241 | 0 | -0.025 | 0.0107527 | 0 | 0 | 0 | 0 | 0 | -0.021505 |
0.0102041 | -0.017241 | 0.059418 | 0 | 0.0080645 | -0.020408 | -0.013333 | 0 | 0 | -0.016129 | 0 | 0 |
-0.005925 | 0 | 0 | 0.0424621 | 0 | 0 | 0 | -0.020408 | 0 | 0 | 0 | 0 |
-0.025 | -0.025 | 0.0080645 | 0 | 0.0678684 | 0 | 0 | 0.0098039 | -0.019608 | -0.016129 | 0 | 0 |
-0.020408 | 0.0107527 | -0.020408 | 0 | 0 | 0.0588683 | 0 | 0 | 0 | 0 | -0.014599 | -0.021505 |
0 | 0 | -0.013333 | 0 | 0 | 0 | 0.0266667 | 0 | 0 | 0 | 0 | 0 |
-0.020408 | 0 | 0 | -0.020408 | 0.0098039 | 0 | 0 | 0.0506202 | -0.019608 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -0.019608 | 0 | 0 | -0.019608 | 0.0392157 | 0 | 0 | 0 |
0 | 0 | -0.016129 | 0 | -0.016129 | 0 | 0 | 0 | 0 | 0.0322581 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -0.014599 | 0 | 0 | 0 | 0 | 0.0291971 | 0 |
0 | -0.021505 | 0 | 0 | 0 | -0.021505 | 0 | 0 | 0 | 0 | 0 | 0.0430108 |
gainv | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.069 | 0.013 | 0.010 | -0.006 | -0.025 | -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.000 | 0.000 |
0.013 | 0.055 | -0.017 | 0.000 | -0.025 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.022 |
0.010 | -0.017 | 0.059 | 0.000 | 0.008 | -0.020 | -0.013 | 0.000 | 0.000 | -0.016 | 0.000 | 0.000 |
-0.006 | 0.000 | 0.000 | 0.042 | 0.000 | 0.000 | 0.000 | -0.020 | 0.000 | 0.000 | 0.000 | 0.000 |
-0.025 | -0.025 | 0.008 | 0.000 | 0.068 | 0.000 | 0.000 | 0.010 | -0.020 | -0.016 | 0.000 | 0.000 |
-0.020 | 0.011 | -0.020 | 0.000 | 0.000 | 0.059 | 0.000 | 0.000 | 0.000 | 0.000 | -0.015 | -0.022 |
0.000 | 0.000 | -0.013 | 0.000 | 0.000 | 0.000 | 0.027 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
-0.020 | 0.000 | 0.000 | -0.020 | 0.010 | 0.000 | 0.000 | 0.051 | -0.020 | 0.000 | 0.000 | 0.000 |
0.000 | 0.000 | 0.000 | 0.000 | -0.020 | 0.000 | 0.000 | -0.020 | 0.039 | 0.000 | 0.000 | 0.000 |
0.000 | 0.000 | -0.016 | 0.000 | -0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.032 | 0.000 | 0.000 |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.029 | 0.000 |
0.000 | -0.022 | 0.000 | 0.000 | 0.000 | -0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.043 |
Compute lhs = left hand side of the MME |
Add gainv to lhs |
lhs | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
ROW1 | 0.3542946 | 0.1536096 | 0.200685 | 0.1969699 | 0.1577088 | 0.1965858 | 0.0204082 | 0.0625 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0212766 | 0.0327869 | 0.0212766 | 0.021025 | 0.0222222 | 0.0302457 | 0.0302457 |
ROW2 | 0.1536096 | 0.0917455 | 0.0618642 | 0.0953487 | 0.0824002 | 0.0712094 | 0.0204082 | 0 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0159574 | 0.0081967 | 0.0159574 | 0.0131406 | 0.0111111 | 0.0113422 | 0.0113422 |
ROW3 | 0.200685 | 0.0618642 | 0.1388208 | 0.1016212 | 0.0753086 | 0.1253763 | 0 | 0.0625 | 0.0153846 | 0.0153846 | 0.0153846 | 0.0053191 | 0.0245902 | 0.0053191 | 0.0078844 | 0.0111111 | 0.0189036 | 0.0189036 |
ROW4 | 0.1969699 | 0.0953487 | 0.1016212 | 0.155981 | 0.0915964 | 0.1053736 | 0 | 0 | 0.0307692 | 0.0307692 | 0.0307692 | 0.0106383 | 0.0163934 | 0.0106383 | 0.0105125 | 0.0111111 | 0.0226843 | 0.0226843 |
ROW5 | 0.1577088 | 0.0824002 | 0.0753086 | 0.0915964 | 0.1577088 | 0 | 0.0204082 | 0 | 0 | 0 | 0.0307692 | 0.0212766 | 0.0327869 | 0 | 0 | 0.0222222 | 0 | 0.0302457 |
ROW6 | 0.1965858 | 0.0712094 | 0.1253763 | 0.1053736 | 0 | 0.1965858 | 0 | 0.0625 | 0.0307692 | 0.0307692 | 0 | 0 | 0 | 0.0212766 | 0.021025 | 0 | 0.0302457 | 0 |
ROW7 | 0.0204082 | 0.0204082 | 0 | 0 | 0.0204082 | 0 | 0.0891586 | 0.0125 | 0.0102041 | -0.005925 | -0.025 | -0.020408 | 0 | -0.020408 | 0 | 0 | 0 | 0 |
ROW8 | 0.0625 | 0 | 0.0625 | 0 | 0 | 0.0625 | 0.0125 | 0.1171007 | -0.017241 | 0 | -0.025 | 0.0107527 | 0 | 0 | 0 | 0 | 0 | -0.021505 |
ROW9 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | 0.0102041 | -0.017241 | 0.0901873 | 0 | 0.0080645 | -0.020408 | -0.013333 | 0 | 0 | -0.016129 | 0 | 0 |
ROW10 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0 | 0.0307692 | -0.005925 | 0 | 0 | 0.0732314 | 0 | 0 | 0 | -0.020408 | 0 | 0 | 0 | 0 |
ROW11 | 0.0307692 | 0.0153846 | 0.0153846 | 0.0307692 | 0.0307692 | 0 | -0.025 | -0.025 | 0.0080645 | 0 | 0.0986377 | 0 | 0 | 0.0098039 | -0.019608 | -0.016129 | 0 | 0 |
ROW12 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0.0212766 | 0 | -0.020408 | 0.0107527 | -0.020408 | 0 | 0 | 0.0801449 | 0 | 0 | 0 | 0 | -0.014599 | -0.021505 |
ROW13 | 0.0327869 | 0.0081967 | 0.0245902 | 0.0163934 | 0.0327869 | 0 | 0 | 0 | -0.013333 | 0 | 0 | 0 | 0.0594536 | 0 | 0 | 0 | 0 | 0 |
ROW14 | 0.0212766 | 0.0159574 | 0.0053191 | 0.0106383 | 0 | 0.0212766 | -0.020408 | 0 | 0 | -0.020408 | 0.0098039 | 0 | 0 | 0.0718968 | -0.019608 | 0 | 0 | 0 |
ROW15 | 0.021025 | 0.0131406 | 0.0078844 | 0.0105125 | 0 | 0.021025 | 0 | 0 | 0 | 0 | -0.019608 | 0 | 0 | -0.019608 | 0.0602407 | 0 | 0 | 0 |
ROW16 | 0.0222222 | 0.0111111 | 0.0111111 | 0.0111111 | 0.0222222 | 0 | 0 | 0 | -0.016129 | 0 | -0.016129 | 0 | 0 | 0 | 0 | 0.0544803 | 0 | 0 |
ROW17 | 0.0302457 | 0.0113422 | 0.0189036 | 0.0226843 | 0 | 0.0302457 | 0 | 0 | 0 | 0 | 0 | -0.014599 | 0 | 0 | 0 | 0 | 0.0594428 | 0 |
ROW18 | 0.0302457 | 0.0113422 | 0.0189036 | 0.0226843 | 0.0302457 | 0 | 0 | -0.021505 | 0 | 0 | 0 | -0.021505 | 0 | 0 | 0 | 0 | 0 | 0.0732565 |
lhs | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.354 | 0.154 | 0.201 | 0.197 | 0.158 | 0.197 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 | 0.033 | 0.021 | 0.021 | 0.022 | 0.030 | 0.030 |
0.154 | 0.092 | 0.062 | 0.095 | 0.082 | 0.071 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 | 0.008 | 0.016 | 0.013 | 0.011 | 0.011 | 0.011 |
0.201 | 0.062 | 0.139 | 0.102 | 0.075 | 0.125 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 | 0.025 | 0.005 | 0.008 | 0.011 | 0.019 | 0.019 |
0.197 | 0.095 | 0.102 | 0.156 | 0.092 | 0.105 | 0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 | 0.016 | 0.011 | 0.011 | 0.011 | 0.023 | 0.023 |
0.158 | 0.082 | 0.075 | 0.092 | 0.158 | 0.000 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 | 0.033 | 0.000 | 0.000 | 0.022 | 0.000 | 0.030 |
0.197 | 0.071 | 0.125 | 0.105 | 0.000 | 0.197 | 0.000 | 0.063 | 0.031 | 0.031 | 0.000 | 0.000 | 0.000 | 0.021 | 0.021 | 0.000 | 0.030 | 0.000 |
0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.089 | 0.013 | 0.010 | -0.006 | -0.025 | -0.020 | 0.000 | -0.020 | 0.000 | 0.000 | 0.000 | 0.000 |
0.063 | 0.000 | 0.063 | 0.000 | 0.000 | 0.063 | 0.013 | 0.117 | -0.017 | 0.000 | -0.025 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.022 |
0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | 0.010 | -0.017 | 0.090 | 0.000 | 0.008 | -0.020 | -0.013 | 0.000 | 0.000 | -0.016 | 0.000 | 0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.000 | 0.031 | -0.006 | 0.000 | 0.000 | 0.073 | 0.000 | 0.000 | 0.000 | -0.020 | 0.000 | 0.000 | 0.000 | 0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | -0.025 | -0.025 | 0.008 | 0.000 | 0.099 | 0.000 | 0.000 | 0.010 | -0.020 | -0.016 | 0.000 | 0.000 |
0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | -0.020 | 0.011 | -0.020 | 0.000 | 0.000 | 0.080 | 0.000 | 0.000 | 0.000 | 0.000 | -0.015 | -0.022 |
0.033 | 0.008 | 0.025 | 0.016 | 0.033 | 0.000 | 0.000 | 0.000 | -0.013 | 0.000 | 0.000 | 0.000 | 0.059 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.021 | 0.016 | 0.005 | 0.011 | 0.000 | 0.021 | -0.020 | 0.000 | 0.000 | -0.020 | 0.010 | 0.000 | 0.000 | 0.072 | -0.020 | 0.000 | 0.000 | 0.000 |
0.021 | 0.013 | 0.008 | 0.011 | 0.000 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | -0.020 | 0.000 | 0.000 | -0.020 | 0.060 | 0.000 | 0.000 | 0.000 |
0.022 | 0.011 | 0.011 | 0.011 | 0.022 | 0.000 | 0.000 | 0.000 | -0.016 | 0.000 | -0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.054 | 0.000 | 0.000 |
0.030 | 0.011 | 0.019 | 0.023 | 0.000 | 0.030 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.059 | 0.000 |
0.030 | 0.011 | 0.019 | 0.023 | 0.030 | 0.000 | 0.000 | -0.022 | 0.000 | 0.000 | 0.000 | -0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.073 |
Compute rhs = right hand side of the MME |
rhs |
---|
94.879904 |
42.100491 |
52.779413 |
53.35649 |
44.532301 |
50.347603 |
5.8979592 |
15.3125 |
7.8769231 |
8.0307692 |
8.9846154 |
6.0851064 |
8.9180328 |
5.6170213 |
5.6767411 |
6.1777778 |
7.8336484 |
8.4688091 |
rhs |
---|
94.88 |
42.10 |
52.78 |
53.36 |
44.53 |
50.35 |
5.90 |
15.31 |
7.88 |
8.03 |
8.98 |
6.09 |
8.92 |
5.62 |
5.68 |
6.18 |
7.83 |
8.47 |
Compute ginvlhs = generalized inverse of the left hand side of the MME |
ginvlhs | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
ROW1 | 7.010421 | 5.981304 | 1.029117 | -9.493370 | 3.773432 | 3.236989 | -8.098097 | -8.148935 | -5.527533 | -4.653024 | -7.282614 | -8.172574 | -5.819226 | -7.923921 | -8.308871 | -7.684764 | -5.066929 | -7.495720 |
ROW2 | 5.981304 | 35.086344 | -29.10504 | -9.325371 | -1.714712 | 7.696016 | -19.19255 | 11.434982 | 0.388825 | -10.28266 | -2.473859 | -11.02563 | 7.506292 | -20.25523 | -14.38865 | -1.675587 | -3.547344 | 3.324370 |
ROW3 | 1.029117 | -29.10504 | 30.134157 | -0.167999 | 5.488144 | -4.459026 | 11.094455 | -19.58392 | -5.916358 | 5.629632 | -4.808755 | 2.853052 | -13.32552 | 12.331307 | 6.079782 | -6.009177 | -1.519585 | -10.82009 |
ROW4 | -9.493370 | -9.325371 | -0.167999 | 32.882037 | -4.332850 | -5.160520 | 4.570016 | 6.326752 | -4.199428 | -4.690788 | -1.364305 | -0.544679 | -1.028616 | 2.166987 | 1.693709 | -0.777573 | -3.393082 | -1.289042 |
ROW5 | 3.773432 | -1.714712 | 5.488144 | -4.332850 | 7.775667 | -4.002235 | -4.326298 | -5.034449 | -2.797078 | 0.813790 | -6.514578 | -5.947458 | -7.835064 | 0.143193 | -1.582116 | -7.353465 | -1.108852 | -7.801226 |
ROW6 | 3.236989 | 7.696016 | -4.459026 | -5.160520 | -4.002235 | 7.239224 | -3.771799 | -3.114486 | -2.730455 | -5.466814 | -0.768036 | -2.225116 | 2.015838 | -8.067114 | -6.726754 | -0.331299 | -3.958077 | 0.305506 |
ROW7 | -8.098097 | -19.19255 | 11.094455 | 4.570016 | -4.326298 | -3.771799 | 32.307837 | 1.152090 | 6.524530 | 13.572270 | 15.064514 | 19.890694 | 5.112128 | 22.211500 | 18.212837 | 12.178881 | 9.314516 | 10.000618 |
ROW8 | -8.148935 | 11.434982 | -19.58392 | 6.326752 | -5.034449 | -3.114486 | 1.152090 | 32.850818 | 14.569265 | 4.827659 | 14.590161 | 8.013278 | 15.316563 | 3.402771 | 8.752394 | 14.381787 | 9.330710 | 18.763251 |
ROW9 | -5.527533 | 0.388825 | -5.916358 | -4.199428 | -2.797078 | -2.730455 | 6.524530 | 14.569265 | 25.772890 | 9.547394 | 12.024475 | 15.460520 | 13.922075 | 9.416191 | 11.283292 | 16.569363 | 11.408635 | 15.019519 |
ROW10 | -4.653024 | -10.28266 | 5.629632 | -4.690788 | 0.813790 | -5.466814 | 13.572270 | 4.827659 | 9.547394 | 27.568736 | 9.882567 | 12.644874 | 4.640997 | 20.148062 | 15.631491 | 9.223941 | 10.216426 | 8.306272 |
ROW11 | -7.282614 | -2.473859 | -4.808755 | -1.364305 | -6.514578 | -0.768036 | 15.064514 | 14.590161 | 12.024475 | 9.882567 | 27.928985 | 16.005362 | 13.011579 | 11.403591 | 17.019335 | 19.219646 | 10.549007 | 16.724586 |
ROW12 | -8.172574 | -11.02563 | 2.853052 | -0.544679 | -5.947458 | -2.225116 | 19.890694 | 8.013278 | 15.460520 | 12.644874 | 16.005362 | 34.172222 | 11.744265 | 16.940769 | 16.479377 | 16.852904 | 15.087229 | 19.353409 |
ROW13 | -5.819226 | 7.506292 | -13.32552 | -1.028616 | -7.835064 | 2.015838 | 5.112128 | 15.316563 | 13.922075 | 4.640997 | 13.011579 | 11.744265 | 32.232246 | 3.497323 | 6.987132 | 14.939891 | 8.017477 | 16.176497 |
ROW14 | -7.923921 | -20.25523 | 12.331307 | 2.166987 | 0.143193 | -8.067114 | 22.211500 | 3.402771 | 9.416191 | 20.148062 | 11.403591 | 16.940769 | 3.497323 | 39.033719 | 24.424351 | 10.511581 | 11.413431 | 8.467573 |
ROW15 | -8.308871 | -14.38865 | 6.079782 | 1.693709 | -1.582116 | -6.726754 | 18.212837 | 8.752394 | 11.283292 | 15.631491 | 17.019335 | 16.479377 | 6.987132 | 24.424351 | 37.384723 | 13.762694 | 11.863274 | 11.625276 |
ROW16 | -7.684764 | -1.675587 | -6.009177 | -0.777573 | -7.353465 | -0.331299 | 12.178881 | 14.381787 | 16.569363 | 9.223941 | 19.219646 | 16.852904 | 14.939891 | 10.511581 | 13.762694 | 36.810579 | 10.745083 | 17.429099 |
ROW17 | -5.066929 | -3.547344 | -1.519585 | -3.393082 | -1.108852 | -3.958077 | 9.314516 | 9.330710 | 11.408635 | 10.216426 | 10.549007 | 15.087229 | 8.017477 | 11.413431 | 11.863274 | 10.745083 | 27.575226 | 11.710059 |
ROW18 | -7.495720 | 3.324370 | -10.82009 | -1.289042 | -7.801226 | 0.305506 | 10.000618 | 18.763251 | 15.019519 | 8.306272 | 16.724586 | 19.353409 | 16.176497 | 8.467573 | 11.625276 | 17.429099 | 11.710059 | 33.832558 |
ginvlhs | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.010 | 5.981 | 1.029 | -9.493 | 3.773 | 3.237 | -8.098 | -8.149 | -5.528 | -4.653 | -7.283 | -8.173 | -5.819 | -7.924 | -8.309 | -7.685 | -5.067 | -7.496 |
5.981 | 35.086 | -29.11 | -9.325 | -1.715 | 7.696 | -19.19 | 11.435 | 0.389 | -10.28 | -2.474 | -11.03 | 7.506 | -20.26 | -14.39 | -1.676 | -3.547 | 3.324 |
1.029 | -29.11 | 30.134 | -0.168 | 5.488 | -4.459 | 11.094 | -19.58 | -5.916 | 5.630 | -4.809 | 2.853 | -13.33 | 12.331 | 6.080 | -6.009 | -1.520 | -10.82 |
-9.493 | -9.325 | -0.168 | 32.882 | -4.333 | -5.161 | 4.570 | 6.327 | -4.199 | -4.691 | -1.364 | -0.545 | -1.029 | 2.167 | 1.694 | -0.778 | -3.393 | -1.289 |
3.773 | -1.715 | 5.488 | -4.333 | 7.776 | -4.002 | -4.326 | -5.034 | -2.797 | 0.814 | -6.515 | -5.947 | -7.835 | 0.143 | -1.582 | -7.353 | -1.109 | -7.801 |
3.237 | 7.696 | -4.459 | -5.161 | -4.002 | 7.239 | -3.772 | -3.114 | -2.730 | -5.467 | -0.768 | -2.225 | 2.016 | -8.067 | -6.727 | -0.331 | -3.958 | 0.306 |
-8.098 | -19.19 | 11.094 | 4.570 | -4.326 | -3.772 | 32.308 | 1.152 | 6.525 | 13.572 | 15.065 | 19.891 | 5.112 | 22.211 | 18.213 | 12.179 | 9.315 | 10.001 |
-8.149 | 11.435 | -19.58 | 6.327 | -5.034 | -3.114 | 1.152 | 32.851 | 14.569 | 4.828 | 14.590 | 8.013 | 15.317 | 3.403 | 8.752 | 14.382 | 9.331 | 18.763 |
-5.528 | 0.389 | -5.916 | -4.199 | -2.797 | -2.730 | 6.525 | 14.569 | 25.773 | 9.547 | 12.024 | 15.461 | 13.922 | 9.416 | 11.283 | 16.569 | 11.409 | 15.020 |
-4.653 | -10.28 | 5.630 | -4.691 | 0.814 | -5.467 | 13.572 | 4.828 | 9.547 | 27.569 | 9.883 | 12.645 | 4.641 | 20.148 | 15.631 | 9.224 | 10.216 | 8.306 |
-7.283 | -2.474 | -4.809 | -1.364 | -6.515 | -0.768 | 15.065 | 14.590 | 12.024 | 9.883 | 27.929 | 16.005 | 13.012 | 11.404 | 17.019 | 19.220 | 10.549 | 16.725 |
-8.173 | -11.03 | 2.853 | -0.545 | -5.947 | -2.225 | 19.891 | 8.013 | 15.461 | 12.645 | 16.005 | 34.172 | 11.744 | 16.941 | 16.479 | 16.853 | 15.087 | 19.353 |
-5.819 | 7.506 | -13.33 | -1.029 | -7.835 | 2.016 | 5.112 | 15.317 | 13.922 | 4.641 | 13.012 | 11.744 | 32.232 | 3.497 | 6.987 | 14.940 | 8.017 | 16.176 |
-7.924 | -20.26 | 12.331 | 2.167 | 0.143 | -8.067 | 22.211 | 3.403 | 9.416 | 20.148 | 11.404 | 16.941 | 3.497 | 39.034 | 24.424 | 10.512 | 11.413 | 8.468 |
-8.309 | -14.39 | 6.080 | 1.694 | -1.582 | -6.727 | 18.213 | 8.752 | 11.283 | 15.631 | 17.019 | 16.479 | 6.987 | 24.424 | 37.385 | 13.763 | 11.863 | 11.625 |
-7.685 | -1.676 | -6.009 | -0.778 | -7.353 | -0.331 | 12.179 | 14.382 | 16.569 | 9.224 | 19.220 | 16.853 | 14.940 | 10.512 | 13.763 | 36.811 | 10.745 | 17.429 |
-5.067 | -3.547 | -1.520 | -3.393 | -1.109 | -3.958 | 9.315 | 9.331 | 11.409 | 10.216 | 10.549 | 15.087 | 8.017 | 11.413 | 11.863 | 10.745 | 27.575 | 11.710 |
-7.496 | 3.324 | -10.82 | -1.289 | -7.801 | 0.306 | 10.001 | 18.763 | 15.020 | 8.306 | 16.725 | 19.353 | 16.176 | 8.468 | 11.625 | 17.429 | 11.710 | 33.833 |
Compute gl = ginvlhs*lhs = matrix of expectations of solutions |
gl | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.500 | 0.250 | 0.250 | 0.000 | 0.250 | 0.250 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 |
0.250 | 0.625 | -0.375 | 0.000 | 0.125 | 0.125 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 |
0.250 | -0.375 | 0.625 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
-0.000 | -0.000 | -0.000 | 1.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 |
0.250 | 0.125 | 0.125 | -0.000 | 0.625 | -0.375 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 |
0.250 | 0.125 | 0.125 | 0.000 | -0.375 | 0.625 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
-0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
-0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 |
-0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 |
-0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 1.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 1.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 |
-0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | -0.000 |
0.000 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 1.000 | 0.000 | -0.000 | -0.000 |
-0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 |
-0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | -0.000 |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 1.000 |
Notice that lg = gl (i.e., lhs*ginvlhs = lhs*ginvlhs) |
lg | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.500 | 0.250 | 0.250 | 0.000 | 0.250 | 0.250 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.250 | 0.625 | -0.375 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.250 | -0.375 | 0.625 | 0.000 | 0.125 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
-0.000 | 0.000 | -0.000 | 1.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.250 | 0.125 | 0.125 | -0.000 | 0.625 | -0.375 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.250 | 0.125 | 0.125 | 0.000 | -0.375 | 0.625 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 |
-0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 |
0.000 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 1.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 |
-0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 0.000 |
0.000 | 0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | 0.000 |
-0.000 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | 0.000 | -0.000 | 0.000 | -0.000 |
-0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
-0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 1.000 | 0.000 | 0.000 | 0.000 |
0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | 0.000 | 1.000 | 0.000 | -0.000 |
0.000 | 0.000 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 | -0.000 | 1.000 | -0.000 |
0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 |
Verify that lgl = lhs (i.e., lhs*ginvlhs*lhs = lhs => generalized inverse is correct) |
lgl | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.354 | 0.154 | 0.201 | 0.197 | 0.158 | 0.197 | 0.020 | 0.063 | 0.031 | 0.031 | 0.031 | 0.021 | 0.033 | 0.021 | 0.021 | 0.022 | 0.030 | 0.030 |
0.154 | 0.092 | 0.062 | 0.095 | 0.082 | 0.071 | 0.020 | 0.000 | 0.015 | 0.015 | 0.015 | 0.016 | 0.008 | 0.016 | 0.013 | 0.011 | 0.011 | 0.011 |
0.201 | 0.062 | 0.139 | 0.102 | 0.075 | 0.125 | 0.000 | 0.063 | 0.015 | 0.015 | 0.015 | 0.005 | 0.025 | 0.005 | 0.008 | 0.011 | 0.019 | 0.019 |
0.197 | 0.095 | 0.102 | 0.156 | 0.092 | 0.105 | -0.000 | 0.000 | 0.031 | 0.031 | 0.031 | 0.011 | 0.016 | 0.011 | 0.011 | 0.011 | 0.023 | 0.023 |
0.158 | 0.082 | 0.075 | 0.092 | 0.158 | 0.000 | 0.020 | 0.000 | 0.000 | 0.000 | 0.031 | 0.021 | 0.033 | 0.000 | 0.000 | 0.022 | 0.000 | 0.030 |
0.197 | 0.071 | 0.125 | 0.105 | -0.000 | 0.197 | -0.000 | 0.063 | 0.031 | 0.031 | -0.000 | -0.000 | -0.000 | 0.021 | 0.021 | 0.000 | 0.030 | -0.000 |
0.020 | 0.020 | 0.000 | 0.000 | 0.020 | 0.000 | 0.089 | 0.013 | 0.010 | -0.006 | -0.025 | -0.020 | 0.000 | -0.020 | 0.000 | -0.000 | 0.000 | -0.000 |
0.062 | -0.000 | 0.063 | -0.000 | -0.000 | 0.063 | 0.013 | 0.117 | -0.017 | 0.000 | -0.025 | 0.011 | 0.000 | -0.000 | 0.000 | -0.000 | -0.000 | -0.022 |
0.031 | 0.015 | 0.015 | 0.031 | -0.000 | 0.031 | 0.010 | -0.017 | 0.090 | 0.000 | 0.008 | -0.020 | -0.013 | 0.000 | 0.000 | -0.016 | 0.000 | -0.000 |
0.031 | 0.015 | 0.015 | 0.031 | -0.000 | 0.031 | -0.006 | -0.000 | 0.000 | 0.073 | 0.000 | -0.000 | -0.000 | -0.020 | 0.000 | -0.000 | 0.000 | 0.000 |
0.031 | 0.015 | 0.015 | 0.031 | 0.031 | 0.000 | -0.025 | -0.025 | 0.008 | 0.000 | 0.099 | 0.000 | 0.000 | 0.010 | -0.020 | -0.016 | -0.000 | -0.000 |
0.021 | 0.016 | 0.005 | 0.011 | 0.021 | 0.000 | -0.020 | 0.011 | -0.020 | -0.000 | -0.000 | 0.080 | 0.000 | -0.000 | 0.000 | -0.000 | -0.015 | -0.022 |
0.033 | 0.008 | 0.025 | 0.016 | 0.033 | 0.000 | 0.000 | 0.000 | -0.013 | 0.000 | -0.000 | -0.000 | 0.059 | -0.000 | -0.000 | -0.000 | 0.000 | -0.000 |
0.021 | 0.016 | 0.005 | 0.011 | -0.000 | 0.021 | -0.020 | 0.000 | -0.000 | -0.020 | 0.010 | 0.000 | -0.000 | 0.072 | -0.020 | 0.000 | 0.000 | -0.000 |
0.021 | 0.013 | 0.008 | 0.011 | 0.000 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | -0.020 | -0.000 | -0.000 | -0.020 | 0.060 | 0.000 | -0.000 | 0.000 |
0.022 | 0.011 | 0.011 | 0.011 | 0.022 | 0.000 | -0.000 | 0.000 | -0.016 | -0.000 | -0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.054 | 0.000 | -0.000 |
0.030 | 0.011 | 0.019 | 0.023 | -0.000 | 0.030 | -0.000 | 0.000 | -0.000 | 0.000 | -0.000 | -0.015 | 0.000 | 0.000 | -0.000 | -0.000 | 0.059 | -0.000 |
0.030 | 0.011 | 0.019 | 0.023 | 0.030 | 0.000 | -0.000 | -0.022 | -0.000 | 0.000 | 0.000 | -0.022 | -0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.073 |
Compute ranklhs = rank of the MME = trace of ginvlhs*lhs |
ranklhs |
---|
16 |
Compute sol = vector of solutions for the MME |
sol |
---|
132.92958 |
76.625398 |
56.304178 |
7.3226024 |
78.016381 |
54.913195 |
2.0823513 |
0.6294069 |
-3.040196 |
0.4273981 |
3.8830874 |
-0.225963 |
-2.883137 |
1.8791854 |
5.1880816 |
-1.003531 |
0.8301802 |
-0.031249 |
sol |
---|
132.93 |
76.63 |
56.30 |
7.32 |
78.02 |
54.91 |
2.08 |
0.63 |
-3.04 |
0.43 |
3.88 |
-0.23 |
-2.88 |
1.88 |
5.19 |
-1.00 |
0.83 |
-0.03 |
Compute sesol = standard error of solutions |
sesol |
---|
2.65 |
5.92 |
5.49 |
5.73 |
2.79 |
2.69 |
5.68 |
5.73 |
5.08 |
5.25 |
5.28 |
5.85 |
5.68 |
6.25 |
6.11 |
6.07 |
5.25 |
5.82 |
Computation of Additive, Nonadditive, and Total Genetic Predictions |
Using matrix computations |
Define ka = coefficient matrix of multiple trait additive genetic predictions deviated from B |
ka | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
ROW1 | 0 | 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW3 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW4 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW5 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW6 | 0 | 0.75 | -0.75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW7 | 0 | 0.25 | -0.25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
ROW8 | 0 | 0.75 | -0.75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
ROW9 | 0 | 0.625 | -0.625 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
ROW10 | 0 | 0.5 | -0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
ROW11 | 0 | 0.375 | -0.375 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
ROW12 | 0 | 0.375 | -0.375 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
ka | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 1.00 | -1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.25 | -0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.63 | -0.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
0.00 | 0.38 | -0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
0.00 | 0.38 | -0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
Compute kagl = ka*ginvlhs*lhs to check if functions in matrix ka are estimable |
(kagl = ka if functions in ka are estimable) |
kagl | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 1.00 | -1.00 | 0.00 | -0.00 | 0.00 | 1.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 1.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 1.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.75 | -0.75 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 1.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.25 | -0.25 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 1.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.75 | -0.75 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 1.00 | -0.00 | 0.00 | 0.00 | -0.00 |
0.00 | 0.63 | -0.63 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | 0.00 | -0.00 |
0.00 | 0.50 | -0.50 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 |
-0.00 | 0.38 | -0.38 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | -0.00 |
0.00 | 0.38 | -0.37 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 1.00 |
difkaglka | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 |
0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 |
-0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 |
0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 |
Compute uaka = vector of multibreed additive genetic predictions |
uaka |
---|
22.40 |
0.63 |
7.12 |
10.59 |
14.04 |
15.01 |
2.20 |
17.12 |
17.89 |
9.16 |
8.45 |
7.59 |
Compute vepuaka = matrix of variance of errors of additive genetic predictions |
vepuaka | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
95.16 | 32.17 | 59.40 | 44.23 | 63.97 | 75.87 | 49.23 | 59.48 | 55.96 | 63.08 | 42.22 | 59.07 |
32.17 | 32.85 | 30.08 | 20.34 | 30.10 | 31.28 | 23.07 | 26.67 | 28.14 | 29.89 | 20.96 | 30.40 |
59.40 | 30.08 | 62.94 | 35.60 | 47.20 | 59.54 | 41.34 | 44.14 | 43.56 | 52.75 | 35.90 | 47.60 |
44.23 | 20.34 | 35.60 | 42.51 | 33.95 | 40.06 | 26.51 | 38.21 | 34.02 | 34.29 | 26.38 | 32.55 |
63.97 | 30.10 | 47.20 | 33.95 | 61.12 | 57.10 | 39.44 | 43.15 | 46.82 | 53.41 | 33.55 | 47.82 |
75.87 | 31.28 | 59.54 | 40.06 | 57.10 | 82.78 | 47.04 | 51.52 | 50.31 | 59.45 | 43.08 | 59.47 |
49.23 | 23.07 | 41.34 | 26.51 | 39.44 | 47.04 | 50.36 | 34.12 | 34.18 | 41.87 | 26.89 | 39.10 |
59.48 | 26.67 | 44.14 | 38.21 | 43.15 | 51.52 | 34.12 | 59.58 | 46.56 | 43.75 | 32.39 | 41.57 |
55.96 | 28.14 | 43.56 | 34.02 | 46.82 | 50.31 | 34.18 | 46.56 | 60.01 | 44.81 | 31.85 | 41.72 |
63.08 | 29.89 | 52.75 | 34.29 | 53.41 | 59.45 | 41.87 | 43.75 | 44.81 | 72.00 | 34.50 | 49.27 |
42.22 | 20.96 | 35.90 | 26.38 | 33.55 | 43.08 | 26.89 | 32.39 | 31.85 | 34.50 | 43.41 | 33.61 |
59.07 | 30.40 | 47.60 | 32.55 | 47.82 | 59.47 | 39.10 | 41.57 | 41.72 | 49.27 | 33.61 | 61.80 |
Compute sepuaka = vector of standard errors of additive genetic predictions |
sepuaka |
---|
9.76 |
5.73 |
7.93 |
6.52 |
7.82 |
9.10 |
7.10 |
7.72 |
7.75 |
8.49 |
6.59 |
7.86 |
Define kn = coefficient matrix of direct and maternal nonadditive genetic predictions |
Assume that males will be mated to (1/2A 1/2B) females and viceversa |
kn | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
ROW1 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW2 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW3 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW4 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW5 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW6 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW7 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW8 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW9 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW10 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW11 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW12 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
kn | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Compute kngl = kn*ginvlhs*lhs to check if functions in matrix kn are estimable |
(kngl = kn if functions in kn are estimable) |
kngl | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
difknglkn | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 |
Compute uakn = vector of multibreed nonadditive genetic predictions |
uakn |
---|
3.66 |
3.66 |
3.66 |
3.66 |
3.66 |
3.66 |
3.66 |
3.66 |
3.66 |
3.66 |
3.66 |
3.66 |
Compute vepuakn = matrix of variance of errors of nonadditive genetic predictions |
vepuakn | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 | 8.22 |
Compute sepuakn = vector of standard errors of nonadditive genetic predictions |
sepuakn |
---|
2.87 |
2.87 |
2.87 |
2.87 |
2.87 |
2.87 |
2.87 |
2.87 |
2.87 |
2.87 |
2.87 |
2.87 |
Define kt = coefficient matrix of total direct and maternal genetic predictions |
Assume that males will be mated to (1/2A 1/2B) females and viceversa |
kt | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COL1 | COL2 | COL3 | COL4 | COL5 | COL6 | COL7 | COL8 | COL9 | COL10 | COL11 | COL12 | COL13 | COL14 | COL15 | COL16 | COL17 | COL18 | |
ROW1 | 0 | 1 | -1 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW2 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW3 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW4 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW5 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW6 | 0 | 0.75 | -0.75 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
ROW7 | 0 | 0.25 | -0.25 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
ROW8 | 0 | 0.75 | -0.75 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
ROW9 | 0 | 0.625 | -0.625 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
ROW10 | 0 | 0.5 | -0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
ROW11 | 0 | 0.375 | -0.375 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
ROW12 | 0 | 0.375 | -0.375 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
kt | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 1.00 | -1.00 | 0.50 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.25 | -0.25 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.75 | -0.75 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.63 | -0.63 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.50 | -0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
0.00 | 0.38 | -0.38 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
0.00 | 0.38 | -0.38 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |
Compute ktgl = kt*ginvlhs*lhs to check if functions in matrix kt are estimable |
(ktgl = kt if functions in kt are estimable) |
ktgl | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | 1.00 | -1.00 | 0.50 | -0.00 | 0.00 | 1.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | 0.50 | -0.00 | -0.00 | -0.00 | 1.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 |
-0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 1.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 1.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.75 | -0.75 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 1.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.25 | -0.25 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 1.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.75 | -0.75 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 1.00 | -0.00 | 0.00 | 0.00 | -0.00 |
0.00 | 0.63 | -0.63 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | 0.00 | 0.00 | -0.00 |
-0.00 | 0.50 | -0.50 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 1.00 | 0.00 | -0.00 |
-0.00 | 0.38 | -0.38 | 0.50 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 1.00 | -0.00 |
0.00 | 0.38 | -0.38 | 0.50 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 1.00 |
difktglkt | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 |
-0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | 0.00 | -0.00 |
0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 |
-0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 |
-0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | -0.00 |
0.00 | 0.00 | -0.00 | 0.00 | -0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | -0.00 |
Compute uakt = vector of multibreed total genetic predictions |
uakt |
---|
26.06 |
4.29 |
10.78 |
14.25 |
17.70 |
18.68 |
5.86 |
20.78 |
21.55 |
12.82 |
12.11 |
11.25 |
Compute vepuakt = matrix of variance of errors of total genetic predictions |
vepuakt | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
98.80 | 41.26 | 60.94 | 45.52 | 66.93 | 78.09 | 53.50 | 63.06 | 59.87 | 66.33 | 44.73 | 62.64 |
41.26 | 47.40 | 37.07 | 27.09 | 38.51 | 38.95 | 32.80 | 35.70 | 37.51 | 38.60 | 28.93 | 39.42 |
60.94 | 37.07 | 62.38 | 34.80 | 48.06 | 59.66 | 43.52 | 45.62 | 45.38 | 53.90 | 36.32 | 49.07 |
45.52 | 27.09 | 34.80 | 41.47 | 34.57 | 39.94 | 28.43 | 39.44 | 35.60 | 35.20 | 26.55 | 33.78 |
66.93 | 38.51 | 48.06 | 34.57 | 63.40 | 58.65 | 43.03 | 46.05 | 50.05 | 55.98 | 35.39 | 50.70 |
78.09 | 38.95 | 59.66 | 39.94 | 58.65 | 83.59 | 49.90 | 53.69 | 52.81 | 61.29 | 44.18 | 61.62 |
53.50 | 32.80 | 43.52 | 28.43 | 43.03 | 49.90 | 55.27 | 38.33 | 38.72 | 45.75 | 30.04 | 43.30 |
63.06 | 35.70 | 45.62 | 39.44 | 46.05 | 53.69 | 38.33 | 63.10 | 50.42 | 46.95 | 34.84 | 45.08 |
59.87 | 37.51 | 45.38 | 35.60 | 50.05 | 52.81 | 38.72 | 50.42 | 64.21 | 48.34 | 34.64 | 45.56 |
66.33 | 38.60 | 53.90 | 35.20 | 55.98 | 61.29 | 45.75 | 46.95 | 48.34 | 74.87 | 36.63 | 52.45 |
44.73 | 28.93 | 36.32 | 26.55 | 35.39 | 44.18 | 30.04 | 34.84 | 34.64 | 36.63 | 44.81 | 36.06 |
62.64 | 39.42 | 49.07 | 33.78 | 50.70 | 61.62 | 43.30 | 45.08 | 45.56 | 52.45 | 36.06 | 65.30 |
Compute sepuakt = vector of standard errors of total genetic predictions |
sepuakt |
---|
9.94 |
6.88 |
7.90 |
6.44 |
7.96 |
9.14 |
7.43 |
7.94 |
8.01 |
8.65 |
6.69 |
8.08 |