GEV_03_GENETIC-GENOMIC MODELS_COMPLETE OR MISSING GENOTYPES_October-31-2014_a November 1, 2014
INPUT DATA FILE

Obs animal sire dam afa afb sfa sfb dfa dfb mgsfa mgsfb mgdfa mgdfb sex bw ww snp01 snp02 snp03 snp04 snp05 snp06 snp07 snp08 snp09 snp10 snp11 snp12 snp13 snp14 snp15 snp16 snp17 snp18 snp19 snp20 snp21 snp22 snp23 snp24 snp25 snp26 snp27 snp28 snp29 snp30 snp31 snp32 snp33 snp34 snp35 snp36 snp37 snp38 snp39 snp40 snp41 snp42 snp43 snp44 snp45 snp46 snp47 snp48 snp49 snp50 snp51 snp52 snp53 snp54 snp55 snp56 snp57 snp58 snp59 snp60
1 1 0 0 1.000 0.000 1.00 0.00 1.00 0.00 1 0 1.0 0.0 1 33 289 2 1 1 2 1 1 2 2 0 1 1 1 0 1 2 1 2 0 2 2 0 2 2 0 1 0 0 0 1 0 2 1 0 1 0 1 1 2 2 1 0 2 1 1 0 1 2 1 1 1 0 2 0 2 0 0 0 0 2 2
2 2 0 0 0.000 1.000 0.00 1.00 0.00 1.00 0 1 0.0 1.0 2 29 245 0 1 2 0 0 1 2 2 1 2 2 0 1 2 1 1 2 1 0 2 0 2 2 2 1 1 1 2 2 1 2 2 1 1 0 1 1 1 2 2 2 1 2 0 1 0 0 2 0 2 2 1 1 0 0 1 0 1 2 1
3 3 0 2 0.500 0.500 1.00 0.00 0.00 1.00 0 1 0.0 1.0 2 32 256 1 2 0 0 1 1 1 2 2 2 1 0 1 0 2 1 2 1 2 2 0 2 2 0 1 1 0 2 1 1 2 2 1 0 0 0 2 0 1 2 0 1 1 0 0 2 1 2 2 1 0 1 0 1 0 0 0 1 1 2
4 4 1 0 0.500 0.500 1.00 0.00 0.00 1.00 0 1 0.0 1.0 2 30 261 1 2 0 0 0 2 2 0 0 2 1 2 0 1 1 0 2 2 1 0 0 1 1 1 1 1 0 2 2 1 1 1 1 1 1 1 1 0 2 2 0 1 2 0 1 1 1 2 2 1 2 1 0 1 0 1 0 1 2 1
5 5 1 2 0.500 0.500 1.00 0.00 0.00 1.00 0 1 0.0 1.0 1 38 292 1 2 0 1 1 1 1 1 1 2 2 2 0 1 1 1 2 0 2 2 0 2 1 1 0 0 1 1 0 0 2 2 0 0 0 2 2 2 2 1 2 2 2 0 0 0 2 2 1 2 0 1 0 1 0 1 0 2 2 1
6 6 1 3 0.750 0.250 1.00 0.00 0.50 0.50 1 0 0.0 1.0 1 35 286 2 1 2 2 1 2 2 1 1 2 1 1 2 0 2 0 2 1 0 1 0 1 2 2 0 0 0 2 1 0 2 2 1 1 1 0 2 0 1 1 0 2 1 0 0 1 2 1 1 2 1 1 1 2 0 1 0 1 2 1
7 7 0 3 0.250 0.750 0.00 1.00 0.50 0.50 1 0 0.0 1.0 1 28 272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 8 1 4 0.750 0.250 1.00 0.00 0.50 0.50 1 0 0.0 1.0 2 31 264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 9 5 8 0.625 0.375 0.50 0.50 0.75 0.25 1 0 0.5 0.5 2 30 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 10 5 3 0.500 0.500 0.50 0.50 0.50 0.50 1 0 0.0 1.0 1 33 278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 11 6 0 0.375 0.625 0.75 0.25 0.00 1.00 0 1 0.0 1.0 2 27 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 12 6 2 0.375 0.625 0.75 0.25 0.00 1.00 0 1 0.0 1.0 1 32 280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



GEV_03_GENETIC-GENOMIC MODELS_COMPLETE OR MISSING GENOTYPES_October-31-2014_a November 1, 2014
Model_30_Animal_GEV_03_1T_Polygenic_October-31-2014_a November 1, 2014

GENETIC AND GENOMIC EVALUATION NOTES

CHAPTER GEV_03 ALL MODELS

MULTIPLE TRAIT GENETIC AND GENOMIC MODELS WITH:

1) UNEQUAL RESIDUAL, ADDITIVE GENETIC, AND NONADDITIVE GENETIC COVARIANCE MATRICES ACROSS BREED GROUPS

2) EQUAL RESIDUAL COVARIANCE MATRIX, UNEQUAL ADDITIVE AND NONADDITIVE GENETIC COVARIANCE MATRICES

3) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, UNEQUAL NONADDITIVE GENETIC COVARIANCE MATRICES

4) EQUAL RESIDUAL AND ADDITIVE GENETIC COVARIANCE MATRICES, NO RANDOM NONADDITIVE GENETIC EFFECTS

Mauricio A. Elzo, University of Florida, maelzo@ufl.edu

Read input dataset (SAS file)

datmat = matrix of input data

datmat
  COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17 COL18 COL19 COL20 COL21 COL22 COL23 COL24 COL25 COL26 COL27 COL28 COL29 COL30 COL31 COL32 COL33 COL34 COL35 COL36 COL37 COL38 COL39 COL40 COL41 COL42 COL43 COL44 COL45 COL46 COL47 COL48 COL49 COL50 COL51 COL52 COL53 COL54 COL55 COL56 COL57 COL58 COL59 COL60 COL61 COL62 COL63 COL64 COL65 COL66 COL67 COL68 COL69 COL70 COL71 COL72 COL73 COL74 COL75 COL76
ROW1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 33 289 2 1 1 2 1 1 2 2 0 1 1 1 0 1 2 1 2 0 2 2 0 2 2 0 1 0 0 0 1 0 2 1 0 1 0 1 1 2 2 1 0 2 1 1 0 1 2 1 1 1 0 2 0 2 0 0 0 0 2 2
ROW2 2 0 0 0 1 0 1 0 1 0 1 0 1 2 29 245 0 1 2 0 0 1 2 2 1 2 2 0 1 2 1 1 2 1 0 2 0 2 2 2 1 1 1 2 2 1 2 2 1 1 0 1 1 1 2 2 2 1 2 0 1 0 0 2 0 2 2 1 1 0 0 1 0 1 2 1
ROW3 3 0 2 0.5 0.5 1 0 0 1 0 1 0 1 2 32 256 1 2 0 0 1 1 1 2 2 2 1 0 1 0 2 1 2 1 2 2 0 2 2 0 1 1 0 2 1 1 2 2 1 0 0 0 2 0 1 2 0 1 1 0 0 2 1 2 2 1 0 1 0 1 0 0 0 1 1 2
ROW4 4 1 0 0.5 0.5 1 0 0 1 0 1 0 1 2 30 261 1 2 0 0 0 2 2 0 0 2 1 2 0 1 1 0 2 2 1 0 0 1 1 1 1 1 0 2 2 1 1 1 1 1 1 1 1 0 2 2 0 1 2 0 1 1 1 2 2 1 2 1 0 1 0 1 0 1 2 1
ROW5 5 1 2 0.5 0.5 1 0 0 1 0 1 0 1 1 38 292 1 2 0 1 1 1 1 1 1 2 2 2 0 1 1 1 2 0 2 2 0 2 1 1 0 0 1 1 0 0 2 2 0 0 0 2 2 2 2 1 2 2 2 0 0 0 2 2 1 2 0 1 0 1 0 1 0 2 2 1
ROW6 6 1 3 0.75 0.25 1 0 0.5 0.5 1 0 0 1 1 35 286 2 1 2 2 1 2 2 1 1 2 1 1 2 0 2 0 2 1 0 1 0 1 2 2 0 0 0 2 1 0 2 2 1 1 1 0 2 0 1 1 0 2 1 0 0 1 2 1 1 2 1 1 1 2 0 1 0 1 2 1
ROW7 7 0 3 0.25 0.75 0 1 0.5 0.5 1 0 0 1 1 28 272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ROW8 8 1 4 0.75 0.25 1 0 0.5 0.5 1 0 0 1 2 31 264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ROW9 9 5 8 0.625 0.375 0.5 0.5 0.75 0.25 1 0 0.5 0.5 2 30 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ROW10 10 5 3 0.5 0.5 0.5 0.5 0.5 0.5 1 0 0 1 1 33 278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ROW11 11 6 0 0.375 0.625 0.75 0.25 0 1 0 1 0 1 2 27 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ROW12 12 6 2 0.375 0.625 0.75 0.25 0 1 0 1 0 1 1 32 280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Read allele frequencies input dataset (SAS file)

ntsnp
60

snpfreq
1 0.1509
2 0.4252
3 0.1842
4 0.5314
5 0.6242
6 0.4292
7 0.2036
8 0.3518
9 0.5454
10 0.1048
11 0.3338
12 0.3284
13 0.006
14 0.502
15 0.2263
16 0.4706
17 0.0808
18 0.7216
19 0.026
20 0.3271
21 0.8718
22 0.0948
23 0.3825
24 0.0561
25 0.5401
26 0.6809
27 0.785
28 0.3758
29 0.0067
30 0.7891
31 0.0581
32 0.1429
33 0.6041
34 0.7196
35 0.9386
36 0.6335
37 0.4312
38 0.0033
39 0.2717
40 0.2203
41 0.5794
42 0.2023
43 0.5134
44 0.755
45 0.5648
46 0.518
47 0.3458
48 0.4806
49 0.3258
50 0.3117
51 0.7503
52 0.4132
53 0.743
54 0.6061
55 0.9933
56 0.7377
57 0.9399
58 0.4419
59 0.1295
60 0.0928

Enter Parameters for Current Run

Enter restronsol = 1 to impose restrictions on solutions to solve the MME, else = 0 if not

restronsol
0

No restrictions imposed on solutions to solve MME

Enter nt = Number of traits

nt
1

Enter nfixpol = Number of fixed environmental and polygenic genetic effects

nfixpol
6

Define nbr for the computation of gene content

nbr
2

Enter nrec = Number of records

nrec
12

Enter number of first non-genotyped animal (non-genotyped animals are last in the datafile)

nongenanim1
7

Enter nanim = Number of animals

nanim
12

Enter 1 if model combines additive genetic and genomic relationships, else enter 0

Enter nsnp = number of fixed marker locus genomic effects in the model

nsnp
0

Enter 1 if random marker genomic effects in the model, else enter zero

ranma
0

Enter 1 if random additive polygenic genetic effects in the model, else enter zero

addpol
1

Enter 1 if random additive genomic marker effects in the model, else enter zero

addma
0

Enter 1 if random nonadditive polygenic genetic effects in the model, else enter zero

nadpol
0

Enter 1 if zma values are [0,1,2] if zma values are [VanRaden(2009)]

zmaval
1

Enter 1 if igenomebv are to be computed, else enter zero

Enter 1 if icompmissgenot are to be computed, else enter zero

Compute nf = Number of equations for fixed effects in the MME

nf
6

Compute nma = Number of equations for marker locus additive genetic effects in the MME

nma
0

Compute nga = Number of equations for random animal additive polygenic effects in the MME

nga
12

nga
12

Compute ngn = Number of equations for random polygenic nonadditive genetic effects in the MME

ngn
0

Compute neq = nf+nma+nga+ngn = total number of equations in the MME

neq
18

Define pedigf = pedigree file with breed composition of animals, sires, and dams

pedigf
1 0 0 1 0 1 0 1 0 1 0 1 0
2 0 0 0 1 0 1 0 1 0 1 0 1
3 0 2 0.5 0.5 1 0 0 1 0 1 0 1
4 1 0 0.5 0.5 1 0 0 1 0 1 0 1
5 1 2 0.5 0.5 1 0 0 1 0 1 0 1
6 1 3 0.75 0.25 1 0 0.5 0.5 1 0 0 1
7 0 3 0.25 0.75 0 1 0.5 0.5 1 0 0 1
8 1 4 0.75 0.25 1 0 0.5 0.5 1 0 0 1
9 5 8 0.625 0.375 0.5 0.5 0.75 0.25 1 0 0.5 0.5
10 5 3 0.5 0.5 0.5 0.5 0.5 0.5 1 0 0 1
11 6 0 0.375 0.625 0.75 0.25 0 1 0 1 0 1
12 6 2 0.375 0.625 0.75 0.25 0 1 0 1 0 1

Construct xf = matrix of fixed and random effects

Construct fixed effects in matrix xf

Construct random polygenic additive genetic effects in matrix xf

xf
  COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17 COL18
ROW1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
ROW2 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
ROW3 1 0.5 0.5 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
ROW4 1 0.5 0.5 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
ROW5 1 0.5 0.5 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
ROW6 1 0.75 0.25 0.5 1 0 0 0 0 0 0 1 0 0 0 0 0 0
ROW7 1 0.25 0.75 0.5 1 0 0 0 0 0 0 0 1 0 0 0 0 0
ROW8 1 0.75 0.25 0.5 0 1 0 0 0 0 0 0 0 1 0 0 0 0
ROW9 1 0.625 0.375 0.5 0 1 0 0 0 0 0 0 0 0 1 0 0 0
ROW10 1 0.5 0.5 0.5 1 0 0 0 0 0 0 0 0 0 0 1 0 0
ROW11 1 0.375 0.625 0.75 0 1 0 0 0 0 0 0 0 0 0 0 1 0
ROW12 1 0.375 0.625 0.75 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Make x = xf, i.e., use computed xf

x
  COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17 COL18
ROW1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
ROW2 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
ROW3 1 0.5 0.5 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
ROW4 1 0.5 0.5 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
ROW5 1 0.5 0.5 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
ROW6 1 0.75 0.25 0.5 1 0 0 0 0 0 0 1 0 0 0 0 0 0
ROW7 1 0.25 0.75 0.5 1 0 0 0 0 0 0 0 1 0 0 0 0 0
ROW8 1 0.75 0.25 0.5 0 1 0 0 0 0 0 0 0 1 0 0 0 0
ROW9 1 0.625 0.375 0.5 0 1 0 0 0 0 0 0 0 0 1 0 0 0
ROW10 1 0.5 0.5 0.5 1 0 0 0 0 0 0 0 0 0 0 1 0 0
ROW11 1 0.375 0.625 0.75 0 1 0 0 0 0 0 0 0 0 0 0 1 0
ROW12 1 0.375 0.625 0.75 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Enter intrabreed and interbreed environmental variances

veaa vebb veab
49 16 25

Compute vef = block-diagonal matrix of multibreed residual covariance matrices for individual animals

pedigf
1 0 0 1 0 1 0 1 0 1 0 1 0
2 0 0 0 1 0 1 0 1 0 1 0 1
3 0 2 0.5 0.5 1 0 0 1 0 1 0 1
4 1 0 0.5 0.5 1 0 0 1 0 1 0 1
5 1 2 0.5 0.5 1 0 0 1 0 1 0 1
6 1 3 0.75 0.25 1 0 0.5 0.5 1 0 0 1
7 0 3 0.25 0.75 0 1 0.5 0.5 1 0 0 1
8 1 4 0.75 0.25 1 0 0.5 0.5 1 0 0 1
9 5 8 0.625 0.375 0.5 0.5 0.75 0.25 1 0 0.5 0.5
10 5 3 0.5 0.5 0.5 0.5 0.5 0.5 1 0 0 1
11 6 0 0.375 0.625 0.75 0.25 0 1 0 1 0 1
12 6 2 0.375 0.625 0.75 0.25 0 1 0 1 0 1

vef
49 0 0 0 0 0 0 0 0 0 0 0
0 16 0 0 0 0 0 0 0 0 0 0
0 0 32.5 0 0 0 0 0 0 0 0 0
0 0 0 32.5 0 0 0 0 0 0 0 0
0 0 0 0 32.5 0 0 0 0 0 0 0
0 0 0 0 0 47 0 0 0 0 0 0
0 0 0 0 0 0 30.5 0 0 0 0 0
0 0 0 0 0 0 0 47 0 0 0 0
0 0 0 0 0 0 0 0 47.5625 0 0 0
0 0 0 0 0 0 0 0 0 45 0 0
0 0 0 0 0 0 0 0 0 0 33.0625 0
0 0 0 0 0 0 0 0 0 0 0 33.0625

Make r = vef

r = block-diagonal matrix of residual covariance matrices for individual animals

r
49 0 0 0 0 0 0 0 0 0 0 0
0 16 0 0 0 0 0 0 0 0 0 0
0 0 32.5 0 0 0 0 0 0 0 0 0
0 0 0 32.5 0 0 0 0 0 0 0 0
0 0 0 0 32.5 0 0 0 0 0 0 0
0 0 0 0 0 47 0 0 0 0 0 0
0 0 0 0 0 0 30.5 0 0 0 0 0
0 0 0 0 0 0 0 47 0 0 0 0
0 0 0 0 0 0 0 0 47.5625 0 0 0
0 0 0 0 0 0 0 0 0 45 0 0
0 0 0 0 0 0 0 0 0 0 33.0625 0
0 0 0 0 0 0 0 0 0 0 0 33.0625

invr = inverse of block-diagonal matrix of residual covariance matrices for individual animals

invr
0.0204082 0 0 0 0 0 0 0 0 0 0 0
0 0.0625 0 0 0 0 0 0 0 0 0 0
0 0 0.0307692 0 0 0 0 0 0 0 0 0
0 0 0 0.0307692 0 0 0 0 0 0 0 0
0 0 0 0 0.0307692 0 0 0 0 0 0 0
0 0 0 0 0 0.0212766 0 0 0 0 0 0
0 0 0 0 0 0 0.0327869 0 0 0 0 0
0 0 0 0 0 0 0 0.0212766 0 0 0 0
0 0 0 0 0 0 0 0 0.021025 0 0 0
0 0 0 0 0 0 0 0 0 0.0222222 0 0
0 0 0 0 0 0 0 0 0 0 0.0302457 0
0 0 0 0 0 0 0 0 0 0 0 0.0302457

Read yf = vector of records

yf
289
245
256
261
292
286
272
264
270
278
259
280

Make y = yf, i.e., use read yf

y
289
245
256
261
292
286
272
264
270
278
259
280

Compute xtinvr = x transpose times r

xtinvr
0.0204082 0.0625 0.0307692 0.0307692 0.0307692 0.0212766 0.0327869 0.0212766 0.021025 0.0222222 0.0302457 0.0302457
0.0204082 0 0.0153846 0.0153846 0.0153846 0.0159574 0.0081967 0.0159574 0.0131406 0.0111111 0.0113422 0.0113422
0 0.0625 0.0153846 0.0153846 0.0153846 0.0053191 0.0245902 0.0053191 0.0078844 0.0111111 0.0189036 0.0189036
0 0 0.0307692 0.0307692 0.0307692 0.0106383 0.0163934 0.0106383 0.0105125 0.0111111 0.0226843 0.0226843
0.0204082 0 0 0 0.0307692 0.0212766 0.0327869 0 0 0.0222222 0 0.0302457
0 0.0625 0.0307692 0.0307692 0 0 0 0.0212766 0.021025 0 0.0302457 0
0.0204082 0 0 0 0 0 0 0 0 0 0 0
0 0.0625 0 0 0 0 0 0 0 0 0 0
0 0 0.0307692 0 0 0 0 0 0 0 0 0
0 0 0 0.0307692 0 0 0 0 0 0 0 0
0 0 0 0 0.0307692 0 0 0 0 0 0 0
0 0 0 0 0 0.0212766 0 0 0 0 0 0
0 0 0 0 0 0 0.0327869 0 0 0 0 0
0 0 0 0 0 0 0 0.0212766 0 0 0 0
0 0 0 0 0 0 0 0 0.021025 0 0 0
0 0 0 0 0 0 0 0 0 0.0222222 0 0
0 0 0 0 0 0 0 0 0 0 0.0302457 0
0 0 0 0 0 0 0 0 0 0 0 0.0302457

Compute xtinvrx = x transpose times r times x

xtinvrx
  COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17 COL18
ROW1 0.3542946 0.1536096 0.200685 0.1969699 0.1577088 0.1965858 0.0204082 0.0625 0.0307692 0.0307692 0.0307692 0.0212766 0.0327869 0.0212766 0.021025 0.0222222 0.0302457 0.0302457
ROW2 0.1536096 0.0917455 0.0618642 0.0953487 0.0824002 0.0712094 0.0204082 0 0.0153846 0.0153846 0.0153846 0.0159574 0.0081967 0.0159574 0.0131406 0.0111111 0.0113422 0.0113422
ROW3 0.200685 0.0618642 0.1388208 0.1016212 0.0753086 0.1253763 0 0.0625 0.0153846 0.0153846 0.0153846 0.0053191 0.0245902 0.0053191 0.0078844 0.0111111 0.0189036 0.0189036
ROW4 0.1969699 0.0953487 0.1016212 0.155981 0.0915964 0.1053736 0 0 0.0307692 0.0307692 0.0307692 0.0106383 0.0163934 0.0106383 0.0105125 0.0111111 0.0226843 0.0226843
ROW5 0.1577088 0.0824002 0.0753086 0.0915964 0.1577088 0 0.0204082 0 0 0 0.0307692 0.0212766 0.0327869 0 0 0.0222222 0 0.0302457
ROW6 0.1965858 0.0712094 0.1253763 0.1053736 0 0.1965858 0 0.0625 0.0307692 0.0307692 0 0 0 0.0212766 0.021025 0 0.0302457 0
ROW7 0.0204082 0.0204082 0 0 0.0204082 0 0.0204082 0 0 0 0 0 0 0 0 0 0 0
ROW8 0.0625 0 0.0625 0 0 0.0625 0 0.0625 0 0 0 0 0 0 0 0 0 0
ROW9 0.0307692 0.0153846 0.0153846 0.0307692 0 0.0307692 0 0 0.0307692 0 0 0 0 0 0 0 0 0
ROW10 0.0307692 0.0153846 0.0153846 0.0307692 0 0.0307692 0 0 0 0.0307692 0 0 0 0 0 0 0 0
ROW11 0.0307692 0.0153846 0.0153846 0.0307692 0.0307692 0 0 0 0 0 0.0307692 0 0 0 0 0 0 0
ROW12 0.0212766 0.0159574 0.0053191 0.0106383 0.0212766 0 0 0 0 0 0 0.0212766 0 0 0 0 0 0
ROW13 0.0327869 0.0081967 0.0245902 0.0163934 0.0327869 0 0 0 0 0 0 0 0.0327869 0 0 0 0 0
ROW14 0.0212766 0.0159574 0.0053191 0.0106383 0 0.0212766 0 0 0 0 0 0 0 0.0212766 0 0 0 0
ROW15 0.021025 0.0131406 0.0078844 0.0105125 0 0.021025 0 0 0 0 0 0 0 0 0.021025 0 0 0
ROW16 0.0222222 0.0111111 0.0111111 0.0111111 0.0222222 0 0 0 0 0 0 0 0 0 0 0.0222222 0 0
ROW17 0.0302457 0.0113422 0.0189036 0.0226843 0 0.0302457 0 0 0 0 0 0 0 0 0 0 0.0302457 0
ROW18 0.0302457 0.0113422 0.0189036 0.0226843 0.0302457 0 0 0 0 0 0 0 0 0 0 0 0 0.0302457

Enter intrabreed and interbreed additive genetic covariance matrices

vaaa vabb vaab
36 44 22

Compute the inverse of the additive polygenic covariance matrix

Compute vaf = multibreed additive genetic covariance matrices for individual animals

vaf
36 0 0 0 0 0 0 0 0 0 0 0
0 44 0 0 0 0 0 0 0 0 0 0
0 0 40 0 0 0 0 0 0 0 0 0
0 0 0 40 0 0 0 0 0 0 0 0
0 0 0 0 40 0 0 0 0 0 0 0
0 0 0 0 0 43.5 0 0 0 0 0 0
0 0 0 0 0 0 47.5 0 0 0 0 0
0 0 0 0 0 0 0 43.5 0 0 0 0
0 0 0 0 0 0 0 0 48.625 0 0 0
0 0 0 0 0 0 0 0 0 51 0 0
0 0 0 0 0 0 0 0 0 0 45.125 0
0 0 0 0 0 0 0 0 0 0 0 45.125

Compute diagonals of additive relationship matrix

Animals MUST be ordered from oldest to youngest

Base animals have unknown parents

Additive relationship of each animal with itself

addrel
1
1
1
1
1
1
1
1.25
1.1875
1.125
1
1.125

Compute daf = block-diagonal matrix of residual additive genetic covariance matrices

Recall: (Ga)-1 = (I - 1/2 P') (Block-diagonal Da)-1 (I - 1/2 P) for [dai]-1 blocks

Accounting for multibreed inbreeding completely (Elzo, 1990)

  i sqvii vii
animal i 1 36 6

i j tvii vii uii
1 1 6 6 36

i j tvii vii uii
1 2 0 0 0

i j tvii vii uii
1 3 0 0 0

i j tvii vii uii
1 4 3 3 9

i j tvii vii uii
1 5 3 3 9

i j tvii vii uii
1 6 3 3 9

i j tvii vii uii
1 7 0 0 0

i j tvii vii uii
1 8 4.5 4.5 20.25

i j tvii vii uii
1 9 3.75 3.75 14.0625

i j tvii vii uii
1 10 1.5 1.5 2.25

i j tvii vii uii
1 11 1.5 1.5 2.25

i j tvii vii uii
1 12 1.5 1.5 2.25

i j vmat umat
1 13 6 36
    0 0
    0 0
    3 9
    3 9
    3 9
    0 0
    4.5 20.25
    3.75 14.0625
    1.5 2.25
    1.5 2.25
    1.5 2.25

  i sqvii vii
animal i 2 44 6.6332496

i j tvii vii uii
2 2 6.6332496 6.6332496 44

i j tvii vii uii
2 3 3.3166248 3.3166248 11

i j tvii vii uii
2 4 0 0 0

i j tvii vii uii
2 5 3.3166248 3.3166248 11

i j tvii vii uii
2 6 1.6583124 1.6583124 2.75

i j tvii vii uii
2 7 1.6583124 1.6583124 2.75

i j tvii vii uii
2 8 0 0 0

i j tvii vii uii
2 9 1.6583124 1.6583124 2.75

i j tvii vii uii
2 10 3.3166248 3.3166248 11

i j tvii vii uii
2 11 0.8291562 0.8291562 0.6875

i j tvii vii uii
2 12 4.145781 4.145781 17.1875

i j vmat umat
2 13 6 36
    6.6332496 44
    3.3166248 11
    0 9
    3.3166248 20
    1.6583124 11.75
    1.6583124 2.75
    0 20.25
    1.6583124 16.8125
    3.3166248 13.25
    0.8291562 2.9375
    4.145781 19.4375

  i sqvii vii
animal i 3 29 5.3851648

i j tvii vii uii
3 3 5.3851648 5.3851648 29

i j tvii vii uii
3 4 0 0 0

i j tvii vii uii
3 5 0 0 0

i j tvii vii uii
3 6 2.6925824 2.6925824 7.25

i j tvii vii uii
3 7 2.6925824 2.6925824 7.25

i j tvii vii uii
3 8 0 0 0

i j tvii vii uii
3 9 0 0 0

i j tvii vii uii
3 10 2.6925824 2.6925824 7.25

i j tvii vii uii
3 11 1.3462912 1.3462912 1.8125

i j tvii vii uii
3 12 1.3462912 1.3462912 1.8125

i j vmat umat
3 13 6 36
    6.6332496 44
    5.3851648 40
    0 9
    0 20
    2.6925824 19
    2.6925824 10
    0 20.25
    0 16.8125
    2.6925824 20.5
    1.3462912 4.75
    1.3462912 21.25

  i sqvii vii
animal i 4 31 5.5677644

i j tvii vii uii
4 4 5.5677644 5.5677644 31

i j tvii vii uii
4 5 0 0 0

i j tvii vii uii
4 6 0 0 0

i j tvii vii uii
4 7 0 0 0

i j tvii vii uii
4 8 2.7838822 2.7838822 7.75

i j tvii vii uii
4 9 1.3919411 1.3919411 1.9375

i j tvii vii uii
4 10 0 0 0

i j tvii vii uii
4 11 0 0 0

i j tvii vii uii
4 12 0 0 0

i j vmat umat
4 13 6 36
    6.6332496 44
    5.3851648 40
    5.5677644 40
    0 20
    0 19
    0 10
    2.7838822 28
    1.3919411 18.75
    0 20.5
    0 4.75
    0 21.25

  i sqvii vii
animal i 5 20 4.472136

i j tvii vii uii
5 5 4.472136 4.472136 20

i j tvii vii uii
5 6 0 0 0

i j tvii vii uii
5 7 0 0 0

i j tvii vii uii
5 8 0 0 0

i j tvii vii uii
5 9 2.236068 2.236068 5

i j tvii vii uii
5 10 2.236068 2.236068 5

i j tvii vii uii
5 11 0 0 0

i j tvii vii uii
5 12 0 0 0

i j vmat umat
5 13 6 36
    6.6332496 44
    5.3851648 40
    5.5677644 40
    4.472136 40
    0 19
    0 10
    0 28
    2.236068 23.75
    2.236068 25.5
    0 4.75
    0 21.25

  i sqvii vii
animal i 6 24.5 4.9497475

i j tvii vii uii
6 6 4.9497475 4.9497475 24.5

i j tvii vii uii
6 7 0 0 0

i j tvii vii uii
6 8 0 0 0

i j tvii vii uii
6 9 0 0 0

i j tvii vii uii
6 10 0 0 0

i j tvii vii uii
6 11 2.4748737 2.4748737 6.125

i j tvii vii uii
6 12 2.4748737 2.4748737 6.125

i j vmat umat
6 13 6 36
    6.6332496 44
    5.3851648 40
    5.5677644 40
    4.472136 40
    4.9497475 43.5
    0 10
    0 28
    0 23.75
    0 25.5
    2.4748737 10.875
    2.4748737 27.375

  i sqvii vii
animal i 7 37.5 6.1237244

i j tvii vii uii
7 7 6.1237244 6.1237244 37.5

i j tvii vii uii
7 8 0 0 0

i j tvii vii uii
7 9 0 0 0

i j tvii vii uii
7 10 0 0 0

i j tvii vii uii
7 11 0 0 0

i j tvii vii uii
7 12 0 0 0

i j vmat umat
7 13 6 36
    6.6332496 44
    5.3851648 40
    5.5677644 40
    4.472136 40
    4.9497475 43.5
    6.1237244 47.5
    0 28
    0 23.75
    0 25.5
    0 10.875
    0 27.375

  i sqvii vii
animal i 8 24.5 4.9497475

i j tvii vii uii
8 8 4.9497475 4.9497475 24.5

i j tvii vii uii
8 9 2.4748737 2.4748737 6.125

i j tvii vii uii
8 10 0 0 0

i j tvii vii uii
8 11 0 0 0

i j tvii vii uii
8 12 0 0 0

i j vmat umat
8 13 6 36
    6.6332496 44
    5.3851648 40
    5.5677644 40
    4.472136 40
    4.9497475 43.5
    6.1237244 47.5
    4.9497475 52.5
    2.4748737 29.875
    0 25.5
    0 10.875
    0 27.375

  i sqvii vii
animal i 9 25.5 5.0497525

i j tvii vii uii
9 9 5.0497525 5.0497525 25.5

i j tvii vii uii
9 10 0 0 0

i j tvii vii uii
9 11 0 0 0

i j tvii vii uii
9 12 0 0 0

i j vmat umat
9 13 6 36
    6.6332496 44
    5.3851648 40
    5.5677644 40
    4.472136 40
    4.9497475 43.5
    6.1237244 47.5
    4.9497475 52.5
    5.0497525 55.375
    0 25.5
    0 10.875
    0 27.375

  i sqvii vii
animal i 10 31 5.5677644

i j tvii vii uii
10 10 5.5677644 5.5677644 31

i j tvii vii uii
10 11 0 0 0

i j tvii vii uii
10 12 0 0 0

i j vmat umat
10 13 6 36
    6.6332496 44
    5.3851648 40
    5.5677644 40
    4.472136 40
    4.9497475 43.5
    6.1237244 47.5
    4.9497475 52.5
    5.0497525 55.375
    5.5677644 56.5
    0 10.875
    0 27.375

  i sqvii vii
animal i 11 34.25 5.85235

i j tvii vii uii
11 11 5.85235 5.85235 34.25

i j tvii vii uii
11 12 0 0 0

i j vmat umat
11 13 6 36
    6.6332496 44
    5.3851648 40
    5.5677644 40
    4.472136 40
    4.9497475 43.5
    6.1237244 47.5
    4.9497475 52.5
    5.0497525 55.375
    5.5677644 56.5
    5.85235 45.125
    0 27.375

  i sqvii vii
animal i 12 23.25 4.8218254

i j tvii vii uii
12 12 4.8218254 4.8218254 23.25

i j vmat umat
12 13 6 36
    6.6332496 44
    5.3851648 40
    5.5677644 40
    4.472136 40
    4.9497475 43.5
    6.1237244 47.5
    4.9497475 52.5
    5.0497525 55.375
    5.5677644 56.5
    5.85235 45.125
    4.8218254 50.625

Block-diagonal matrix da for populations with inbred animals

da
36 0 0 0 0 0 0 0 0 0 0 0
0 44 0 0 0 0 0 0 0 0 0 0
0 0 29 0 0 0 0 0 0 0 0 0
0 0 0 31 0 0 0 0 0 0 0 0
0 0 0 0 20 0 0 0 0 0 0 0
0 0 0 0 0 24.5 0 0 0 0 0 0
0 0 0 0 0 0 37.5 0 0 0 0 0
0 0 0 0 0 0 0 24.5 0 0 0 0
0 0 0 0 0 0 0 0 25.5 0 0 0
0 0 0 0 0 0 0 0 0 31 0 0
0 0 0 0 0 0 0 0 0 0 34.25 0
0 0 0 0 0 0 0 0 0 0 0 23.25

Compute dainv = inverse of da

dainv = inverse of block-diagonal matrix of residual additive genetic covariance matrices

dainv
0.0277778 0 0 0 0 0 0 0 0 0 0 0
0 0.0227273 0 0 0 0 0 0 0 0 0 0
0 0 0.0344828 0 0 0 0 0 0 0 0 0
0 0 0 0.0322581 0 0 0 0 0 0 0 0
0 0 0 0 0.05 0 0 0 0 0 0 0
0 0 0 0 0 0.0408163 0 0 0 0 0 0
0 0 0 0 0 0 0.0266667 0 0 0 0 0
0 0 0 0 0 0 0 0.0408163 0 0 0 0
0 0 0 0 0 0 0 0 0.0392157 0 0 0
0 0 0 0 0 0 0 0 0 0.0322581 0 0
0 0 0 0 0 0 0 0 0 0 0.0291971 0
0 0 0 0 0 0 0 0 0 0 0 0.0430108

Compute gainv = inverse of the matrix of multibreed additive genetic covariances

Using algorithm to compute gainv directly; Elzo (1990a),JAS 68:1215-1228

gainv
0.0687505 0.0125 0.0102041 -0.005925 -0.025 -0.020408 0 -0.020408 0 0 0 0
0.0125 0.0546007 -0.017241 0 -0.025 0.0107527 0 0 0 0 0 -0.021505
0.0102041 -0.017241 0.059418 0 0.0080645 -0.020408 -0.013333 0 0 -0.016129 0 0
-0.005925 0 0 0.0424621 0 0 0 -0.020408 0 0 0 0
-0.025 -0.025 0.0080645 0 0.0678684 0 0 0.0098039 -0.019608 -0.016129 0 0
-0.020408 0.0107527 -0.020408 0 0 0.0588683 0 0 0 0 -0.014599 -0.021505
0 0 -0.013333 0 0 0 0.0266667 0 0 0 0 0
-0.020408 0 0 -0.020408 0.0098039 0 0 0.0506202 -0.019608 0 0 0
0 0 0 0 -0.019608 0 0 -0.019608 0.0392157 0 0 0
0 0 -0.016129 0 -0.016129 0 0 0 0 0.0322581 0 0
0 0 0 0 0 -0.014599 0 0 0 0 0.0291971 0
0 -0.021505 0 0 0 -0.021505 0 0 0 0 0 0.0430108

gainv
0.069 0.013 0.010 -0.006 -0.025 -0.020 0.000 -0.020 0.000 0.000 0.000 0.000
0.013 0.055 -0.017 0.000 -0.025 0.011 0.000 0.000 0.000 0.000 0.000 -0.022
0.010 -0.017 0.059 0.000 0.008 -0.020 -0.013 0.000 0.000 -0.016 0.000 0.000
-0.006 0.000 0.000 0.042 0.000 0.000 0.000 -0.020 0.000 0.000 0.000 0.000
-0.025 -0.025 0.008 0.000 0.068 0.000 0.000 0.010 -0.020 -0.016 0.000 0.000
-0.020 0.011 -0.020 0.000 0.000 0.059 0.000 0.000 0.000 0.000 -0.015 -0.022
0.000 0.000 -0.013 0.000 0.000 0.000 0.027 0.000 0.000 0.000 0.000 0.000
-0.020 0.000 0.000 -0.020 0.010 0.000 0.000 0.051 -0.020 0.000 0.000 0.000
0.000 0.000 0.000 0.000 -0.020 0.000 0.000 -0.020 0.039 0.000 0.000 0.000
0.000 0.000 -0.016 0.000 -0.016 0.000 0.000 0.000 0.000 0.032 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -0.015 0.000 0.000 0.000 0.000 0.029 0.000
0.000 -0.022 0.000 0.000 0.000 -0.022 0.000 0.000 0.000 0.000 0.000 0.043

Compute lhs = left hand side of the MME

Add gainv to lhs

lhs
  COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17 COL18
ROW1 0.3542946 0.1536096 0.200685 0.1969699 0.1577088 0.1965858 0.0204082 0.0625 0.0307692 0.0307692 0.0307692 0.0212766 0.0327869 0.0212766 0.021025 0.0222222 0.0302457 0.0302457
ROW2 0.1536096 0.0917455 0.0618642 0.0953487 0.0824002 0.0712094 0.0204082 0 0.0153846 0.0153846 0.0153846 0.0159574 0.0081967 0.0159574 0.0131406 0.0111111 0.0113422 0.0113422
ROW3 0.200685 0.0618642 0.1388208 0.1016212 0.0753086 0.1253763 0 0.0625 0.0153846 0.0153846 0.0153846 0.0053191 0.0245902 0.0053191 0.0078844 0.0111111 0.0189036 0.0189036
ROW4 0.1969699 0.0953487 0.1016212 0.155981 0.0915964 0.1053736 0 0 0.0307692 0.0307692 0.0307692 0.0106383 0.0163934 0.0106383 0.0105125 0.0111111 0.0226843 0.0226843
ROW5 0.1577088 0.0824002 0.0753086 0.0915964 0.1577088 0 0.0204082 0 0 0 0.0307692 0.0212766 0.0327869 0 0 0.0222222 0 0.0302457
ROW6 0.1965858 0.0712094 0.1253763 0.1053736 0 0.1965858 0 0.0625 0.0307692 0.0307692 0 0 0 0.0212766 0.021025 0 0.0302457 0
ROW7 0.0204082 0.0204082 0 0 0.0204082 0 0.0891586 0.0125 0.0102041 -0.005925 -0.025 -0.020408 0 -0.020408 0 0 0 0
ROW8 0.0625 0 0.0625 0 0 0.0625 0.0125 0.1171007 -0.017241 0 -0.025 0.0107527 0 0 0 0 0 -0.021505
ROW9 0.0307692 0.0153846 0.0153846 0.0307692 0 0.0307692 0.0102041 -0.017241 0.0901873 0 0.0080645 -0.020408 -0.013333 0 0 -0.016129 0 0
ROW10 0.0307692 0.0153846 0.0153846 0.0307692 0 0.0307692 -0.005925 0 0 0.0732314 0 0 0 -0.020408 0 0 0 0
ROW11 0.0307692 0.0153846 0.0153846 0.0307692 0.0307692 0 -0.025 -0.025 0.0080645 0 0.0986377 0 0 0.0098039 -0.019608 -0.016129 0 0
ROW12 0.0212766 0.0159574 0.0053191 0.0106383 0.0212766 0 -0.020408 0.0107527 -0.020408 0 0 0.0801449 0 0 0 0 -0.014599 -0.021505
ROW13 0.0327869 0.0081967 0.0245902 0.0163934 0.0327869 0 0 0 -0.013333 0 0 0 0.0594536 0 0 0 0 0
ROW14 0.0212766 0.0159574 0.0053191 0.0106383 0 0.0212766 -0.020408 0 0 -0.020408 0.0098039 0 0 0.0718968 -0.019608 0 0 0
ROW15 0.021025 0.0131406 0.0078844 0.0105125 0 0.021025 0 0 0 0 -0.019608 0 0 -0.019608 0.0602407 0 0 0
ROW16 0.0222222 0.0111111 0.0111111 0.0111111 0.0222222 0 0 0 -0.016129 0 -0.016129 0 0 0 0 0.0544803 0 0
ROW17 0.0302457 0.0113422 0.0189036 0.0226843 0 0.0302457 0 0 0 0 0 -0.014599 0 0 0 0 0.0594428 0
ROW18 0.0302457 0.0113422 0.0189036 0.0226843 0.0302457 0 0 -0.021505 0 0 0 -0.021505 0 0 0 0 0 0.0732565

lhs
0.354 0.154 0.201 0.197 0.158 0.197 0.020 0.063 0.031 0.031 0.031 0.021 0.033 0.021 0.021 0.022 0.030 0.030
0.154 0.092 0.062 0.095 0.082 0.071 0.020 0.000 0.015 0.015 0.015 0.016 0.008 0.016 0.013 0.011 0.011 0.011
0.201 0.062 0.139 0.102 0.075 0.125 0.000 0.063 0.015 0.015 0.015 0.005 0.025 0.005 0.008 0.011 0.019 0.019
0.197 0.095 0.102 0.156 0.092 0.105 0.000 0.000 0.031 0.031 0.031 0.011 0.016 0.011 0.011 0.011 0.023 0.023
0.158 0.082 0.075 0.092 0.158 0.000 0.020 0.000 0.000 0.000 0.031 0.021 0.033 0.000 0.000 0.022 0.000 0.030
0.197 0.071 0.125 0.105 0.000 0.197 0.000 0.063 0.031 0.031 0.000 0.000 0.000 0.021 0.021 0.000 0.030 0.000
0.020 0.020 0.000 0.000 0.020 0.000 0.089 0.013 0.010 -0.006 -0.025 -0.020 0.000 -0.020 0.000 0.000 0.000 0.000
0.063 0.000 0.063 0.000 0.000 0.063 0.013 0.117 -0.017 0.000 -0.025 0.011 0.000 0.000 0.000 0.000 0.000 -0.022
0.031 0.015 0.015 0.031 0.000 0.031 0.010 -0.017 0.090 0.000 0.008 -0.020 -0.013 0.000 0.000 -0.016 0.000 0.000
0.031 0.015 0.015 0.031 0.000 0.031 -0.006 0.000 0.000 0.073 0.000 0.000 0.000 -0.020 0.000 0.000 0.000 0.000
0.031 0.015 0.015 0.031 0.031 0.000 -0.025 -0.025 0.008 0.000 0.099 0.000 0.000 0.010 -0.020 -0.016 0.000 0.000
0.021 0.016 0.005 0.011 0.021 0.000 -0.020 0.011 -0.020 0.000 0.000 0.080 0.000 0.000 0.000 0.000 -0.015 -0.022
0.033 0.008 0.025 0.016 0.033 0.000 0.000 0.000 -0.013 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.000
0.021 0.016 0.005 0.011 0.000 0.021 -0.020 0.000 0.000 -0.020 0.010 0.000 0.000 0.072 -0.020 0.000 0.000 0.000
0.021 0.013 0.008 0.011 0.000 0.021 0.000 0.000 0.000 0.000 -0.020 0.000 0.000 -0.020 0.060 0.000 0.000 0.000
0.022 0.011 0.011 0.011 0.022 0.000 0.000 0.000 -0.016 0.000 -0.016 0.000 0.000 0.000 0.000 0.054 0.000 0.000
0.030 0.011 0.019 0.023 0.000 0.030 0.000 0.000 0.000 0.000 0.000 -0.015 0.000 0.000 0.000 0.000 0.059 0.000
0.030 0.011 0.019 0.023 0.030 0.000 0.000 -0.022 0.000 0.000 0.000 -0.022 0.000 0.000 0.000 0.000 0.000 0.073

Compute rhs = right hand side of the MME

rhs
94.879904
42.100491
52.779413
53.35649
44.532301
50.347603
5.8979592
15.3125
7.8769231
8.0307692
8.9846154
6.0851064
8.9180328
5.6170213
5.6767411
6.1777778
7.8336484
8.4688091

rhs
94.88
42.10
52.78
53.36
44.53
50.35
5.90
15.31
7.88
8.03
8.98
6.09
8.92
5.62
5.68
6.18
7.83
8.47

Compute ginvlhs = generalized inverse of the left hand side of the MME

ginvlhs
  COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17 COL18
ROW1 7.010421 5.981304 1.029117 -9.493370 3.773432 3.236989 -8.098097 -8.148935 -5.527533 -4.653024 -7.282614 -8.172574 -5.819226 -7.923921 -8.308871 -7.684764 -5.066929 -7.495720
ROW2 5.981304 35.086344 -29.10504 -9.325371 -1.714712 7.696016 -19.19255 11.434982 0.388825 -10.28266 -2.473859 -11.02563 7.506292 -20.25523 -14.38865 -1.675587 -3.547344 3.324370
ROW3 1.029117 -29.10504 30.134157 -0.167999 5.488144 -4.459026 11.094455 -19.58392 -5.916358 5.629632 -4.808755 2.853052 -13.32552 12.331307 6.079782 -6.009177 -1.519585 -10.82009
ROW4 -9.493370 -9.325371 -0.167999 32.882037 -4.332850 -5.160520 4.570016 6.326752 -4.199428 -4.690788 -1.364305 -0.544679 -1.028616 2.166987 1.693709 -0.777573 -3.393082 -1.289042
ROW5 3.773432 -1.714712 5.488144 -4.332850 7.775667 -4.002235 -4.326298 -5.034449 -2.797078 0.813790 -6.514578 -5.947458 -7.835064 0.143193 -1.582116 -7.353465 -1.108852 -7.801226
ROW6 3.236989 7.696016 -4.459026 -5.160520 -4.002235 7.239224 -3.771799 -3.114486 -2.730455 -5.466814 -0.768036 -2.225116 2.015838 -8.067114 -6.726754 -0.331299 -3.958077 0.305506
ROW7 -8.098097 -19.19255 11.094455 4.570016 -4.326298 -3.771799 32.307837 1.152090 6.524530 13.572270 15.064514 19.890694 5.112128 22.211500 18.212837 12.178881 9.314516 10.000618
ROW8 -8.148935 11.434982 -19.58392 6.326752 -5.034449 -3.114486 1.152090 32.850818 14.569265 4.827659 14.590161 8.013278 15.316563 3.402771 8.752394 14.381787 9.330710 18.763251
ROW9 -5.527533 0.388825 -5.916358 -4.199428 -2.797078 -2.730455 6.524530 14.569265 25.772890 9.547394 12.024475 15.460520 13.922075 9.416191 11.283292 16.569363 11.408635 15.019519
ROW10 -4.653024 -10.28266 5.629632 -4.690788 0.813790 -5.466814 13.572270 4.827659 9.547394 27.568736 9.882567 12.644874 4.640997 20.148062 15.631491 9.223941 10.216426 8.306272
ROW11 -7.282614 -2.473859 -4.808755 -1.364305 -6.514578 -0.768036 15.064514 14.590161 12.024475 9.882567 27.928985 16.005362 13.011579 11.403591 17.019335 19.219646 10.549007 16.724586
ROW12 -8.172574 -11.02563 2.853052 -0.544679 -5.947458 -2.225116 19.890694 8.013278 15.460520 12.644874 16.005362 34.172222 11.744265 16.940769 16.479377 16.852904 15.087229 19.353409
ROW13 -5.819226 7.506292 -13.32552 -1.028616 -7.835064 2.015838 5.112128 15.316563 13.922075 4.640997 13.011579 11.744265 32.232246 3.497323 6.987132 14.939891 8.017477 16.176497
ROW14 -7.923921 -20.25523 12.331307 2.166987 0.143193 -8.067114 22.211500 3.402771 9.416191 20.148062 11.403591 16.940769 3.497323 39.033719 24.424351 10.511581 11.413431 8.467573
ROW15 -8.308871 -14.38865 6.079782 1.693709 -1.582116 -6.726754 18.212837 8.752394 11.283292 15.631491 17.019335 16.479377 6.987132 24.424351 37.384723 13.762694 11.863274 11.625276
ROW16 -7.684764 -1.675587 -6.009177 -0.777573 -7.353465 -0.331299 12.178881 14.381787 16.569363 9.223941 19.219646 16.852904 14.939891 10.511581 13.762694 36.810579 10.745083 17.429099
ROW17 -5.066929 -3.547344 -1.519585 -3.393082 -1.108852 -3.958077 9.314516 9.330710 11.408635 10.216426 10.549007 15.087229 8.017477 11.413431 11.863274 10.745083 27.575226 11.710059
ROW18 -7.495720 3.324370 -10.82009 -1.289042 -7.801226 0.305506 10.000618 18.763251 15.019519 8.306272 16.724586 19.353409 16.176497 8.467573 11.625276 17.429099 11.710059 33.832558

ginvlhs
7.010 5.981 1.029 -9.493 3.773 3.237 -8.098 -8.149 -5.528 -4.653 -7.283 -8.173 -5.819 -7.924 -8.309 -7.685 -5.067 -7.496
5.981 35.086 -29.11 -9.325 -1.715 7.696 -19.19 11.435 0.389 -10.28 -2.474 -11.03 7.506 -20.26 -14.39 -1.676 -3.547 3.324
1.029 -29.11 30.134 -0.168 5.488 -4.459 11.094 -19.58 -5.916 5.630 -4.809 2.853 -13.33 12.331 6.080 -6.009 -1.520 -10.82
-9.493 -9.325 -0.168 32.882 -4.333 -5.161 4.570 6.327 -4.199 -4.691 -1.364 -0.545 -1.029 2.167 1.694 -0.778 -3.393 -1.289
3.773 -1.715 5.488 -4.333 7.776 -4.002 -4.326 -5.034 -2.797 0.814 -6.515 -5.947 -7.835 0.143 -1.582 -7.353 -1.109 -7.801
3.237 7.696 -4.459 -5.161 -4.002 7.239 -3.772 -3.114 -2.730 -5.467 -0.768 -2.225 2.016 -8.067 -6.727 -0.331 -3.958 0.306
-8.098 -19.19 11.094 4.570 -4.326 -3.772 32.308 1.152 6.525 13.572 15.065 19.891 5.112 22.211 18.213 12.179 9.315 10.001
-8.149 11.435 -19.58 6.327 -5.034 -3.114 1.152 32.851 14.569 4.828 14.590 8.013 15.317 3.403 8.752 14.382 9.331 18.763
-5.528 0.389 -5.916 -4.199 -2.797 -2.730 6.525 14.569 25.773 9.547 12.024 15.461 13.922 9.416 11.283 16.569 11.409 15.020
-4.653 -10.28 5.630 -4.691 0.814 -5.467 13.572 4.828 9.547 27.569 9.883 12.645 4.641 20.148 15.631 9.224 10.216 8.306
-7.283 -2.474 -4.809 -1.364 -6.515 -0.768 15.065 14.590 12.024 9.883 27.929 16.005 13.012 11.404 17.019 19.220 10.549 16.725
-8.173 -11.03 2.853 -0.545 -5.947 -2.225 19.891 8.013 15.461 12.645 16.005 34.172 11.744 16.941 16.479 16.853 15.087 19.353
-5.819 7.506 -13.33 -1.029 -7.835 2.016 5.112 15.317 13.922 4.641 13.012 11.744 32.232 3.497 6.987 14.940 8.017 16.176
-7.924 -20.26 12.331 2.167 0.143 -8.067 22.211 3.403 9.416 20.148 11.404 16.941 3.497 39.034 24.424 10.512 11.413 8.468
-8.309 -14.39 6.080 1.694 -1.582 -6.727 18.213 8.752 11.283 15.631 17.019 16.479 6.987 24.424 37.385 13.763 11.863 11.625
-7.685 -1.676 -6.009 -0.778 -7.353 -0.331 12.179 14.382 16.569 9.224 19.220 16.853 14.940 10.512 13.763 36.811 10.745 17.429
-5.067 -3.547 -1.520 -3.393 -1.109 -3.958 9.315 9.331 11.409 10.216 10.549 15.087 8.017 11.413 11.863 10.745 27.575 11.710
-7.496 3.324 -10.82 -1.289 -7.801 0.306 10.001 18.763 15.020 8.306 16.725 19.353 16.176 8.468 11.625 17.429 11.710 33.833

Compute gl = ginvlhs*lhs = matrix of expectations of solutions

gl
0.500 0.250 0.250 0.000 0.250 0.250 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000
0.250 0.625 -0.375 0.000 0.125 0.125 -0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000
0.250 -0.375 0.625 0.000 0.125 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-0.000 -0.000 -0.000 1.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 -0.000 0.000
0.250 0.125 0.125 -0.000 0.625 -0.375 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000
0.250 0.125 0.125 0.000 -0.375 0.625 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
-0.000 0.000 -0.000 -0.000 0.000 0.000 1.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000
-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 1.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000
-0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 1.000 -0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000
0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 1.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000
-0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 1.000 0.000 -0.000 0.000 0.000 0.000 -0.000
0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 1.000 -0.000 0.000 -0.000 0.000 -0.000
-0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 1.000 0.000 0.000 0.000 -0.000
0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 -0.000 1.000 0.000 -0.000 -0.000
-0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 1.000 0.000 -0.000
-0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 -0.000
0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 1.000

Notice that lg = gl (i.e., lhs*ginvlhs = lhs*ginvlhs)

lg
0.500 0.250 0.250 0.000 0.250 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.250 0.625 -0.375 0.000 0.125 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.250 -0.375 0.625 0.000 0.125 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-0.000 0.000 -0.000 1.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.250 0.125 0.125 -0.000 0.625 -0.375 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.250 0.125 0.125 0.000 -0.375 0.625 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000
-0.000 0.000 0.000 -0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 1.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 1.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.000 -0.000
-0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 1.000 0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 0.000
0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000
-0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 1.000 0.000 0.000 -0.000 0.000 -0.000
-0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
-0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 1.000 0.000 0.000 0.000
0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.000 1.000 0.000 -0.000
0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 1.000 -0.000
0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Verify that lgl = lhs (i.e., lhs*ginvlhs*lhs = lhs => generalized inverse is correct)

lgl
0.354 0.154 0.201 0.197 0.158 0.197 0.020 0.063 0.031 0.031 0.031 0.021 0.033 0.021 0.021 0.022 0.030 0.030
0.154 0.092 0.062 0.095 0.082 0.071 0.020 0.000 0.015 0.015 0.015 0.016 0.008 0.016 0.013 0.011 0.011 0.011
0.201 0.062 0.139 0.102 0.075 0.125 0.000 0.063 0.015 0.015 0.015 0.005 0.025 0.005 0.008 0.011 0.019 0.019
0.197 0.095 0.102 0.156 0.092 0.105 -0.000 0.000 0.031 0.031 0.031 0.011 0.016 0.011 0.011 0.011 0.023 0.023
0.158 0.082 0.075 0.092 0.158 0.000 0.020 0.000 0.000 0.000 0.031 0.021 0.033 0.000 0.000 0.022 0.000 0.030
0.197 0.071 0.125 0.105 -0.000 0.197 -0.000 0.063 0.031 0.031 -0.000 -0.000 -0.000 0.021 0.021 0.000 0.030 -0.000
0.020 0.020 0.000 0.000 0.020 0.000 0.089 0.013 0.010 -0.006 -0.025 -0.020 0.000 -0.020 0.000 -0.000 0.000 -0.000
0.062 -0.000 0.063 -0.000 -0.000 0.063 0.013 0.117 -0.017 0.000 -0.025 0.011 0.000 -0.000 0.000 -0.000 -0.000 -0.022
0.031 0.015 0.015 0.031 -0.000 0.031 0.010 -0.017 0.090 0.000 0.008 -0.020 -0.013 0.000 0.000 -0.016 0.000 -0.000
0.031 0.015 0.015 0.031 -0.000 0.031 -0.006 -0.000 0.000 0.073 0.000 -0.000 -0.000 -0.020 0.000 -0.000 0.000 0.000
0.031 0.015 0.015 0.031 0.031 0.000 -0.025 -0.025 0.008 0.000 0.099 0.000 0.000 0.010 -0.020 -0.016 -0.000 -0.000
0.021 0.016 0.005 0.011 0.021 0.000 -0.020 0.011 -0.020 -0.000 -0.000 0.080 0.000 -0.000 0.000 -0.000 -0.015 -0.022
0.033 0.008 0.025 0.016 0.033 0.000 0.000 0.000 -0.013 0.000 -0.000 -0.000 0.059 -0.000 -0.000 -0.000 0.000 -0.000
0.021 0.016 0.005 0.011 -0.000 0.021 -0.020 0.000 -0.000 -0.020 0.010 0.000 -0.000 0.072 -0.020 0.000 0.000 -0.000
0.021 0.013 0.008 0.011 0.000 0.021 0.000 0.000 0.000 0.000 -0.020 -0.000 -0.000 -0.020 0.060 0.000 -0.000 0.000
0.022 0.011 0.011 0.011 0.022 0.000 -0.000 0.000 -0.016 -0.000 -0.016 0.000 0.000 0.000 0.000 0.054 0.000 -0.000
0.030 0.011 0.019 0.023 -0.000 0.030 -0.000 0.000 -0.000 0.000 -0.000 -0.015 0.000 0.000 -0.000 -0.000 0.059 -0.000
0.030 0.011 0.019 0.023 0.030 0.000 -0.000 -0.022 -0.000 0.000 0.000 -0.022 -0.000 0.000 0.000 0.000 0.000 0.073

Compute ranklhs = rank of the MME = trace of ginvlhs*lhs

ranklhs
16

Compute sol = vector of solutions for the MME

sol
132.92958
76.625398
56.304178
7.3226024
78.016381
54.913195
2.0823513
0.6294069
-3.040196
0.4273981
3.8830874
-0.225963
-2.883137
1.8791854
5.1880816
-1.003531
0.8301802
-0.031249

sol
132.93
76.63
56.30
7.32
78.02
54.91
2.08
0.63
-3.04
0.43
3.88
-0.23
-2.88
1.88
5.19
-1.00
0.83
-0.03

Compute sesol = standard error of solutions

sesol
2.65
5.92
5.49
5.73
2.79
2.69
5.68
5.73
5.08
5.25
5.28
5.85
5.68
6.25
6.11
6.07
5.25
5.82

Computation of Additive, Nonadditive, and Total Genetic Predictions

Using matrix computations

Define ka = coefficient matrix of multiple trait additive genetic predictions deviated from B

ka
  COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17 COL18
ROW1 0 1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
ROW2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
ROW3 0 0.5 -0.5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
ROW4 0 0.5 -0.5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
ROW5 0 0.5 -0.5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
ROW6 0 0.75 -0.75 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
ROW7 0 0.25 -0.25 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
ROW8 0 0.75 -0.75 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
ROW9 0 0.625 -0.625 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
ROW10 0 0.5 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
ROW11 0 0.375 -0.375 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
ROW12 0 0.375 -0.375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

ka
0.00 1.00 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 -0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 -0.50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 -0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.75 -0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.25 -0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.75 -0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.63 -0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.50 -0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.38 -0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.38 -0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Compute kagl = ka*ginvlhs*lhs to check if functions in matrix ka are estimable

(kagl = ka if functions in ka are estimable)

kagl
0.00 1.00 -1.00 0.00 -0.00 0.00 1.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 1.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.50 -0.50 0.00 -0.00 0.00 -0.00 -0.00 1.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.50 -0.50 0.00 -0.00 0.00 -0.00 -0.00 0.00 1.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.50 -0.50 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 1.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.75 -0.75 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 1.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.25 -0.25 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.00 1.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 0.75 -0.75 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 1.00 -0.00 0.00 0.00 -0.00
0.00 0.63 -0.63 0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 1.00 0.00 0.00 -0.00
0.00 0.50 -0.50 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 1.00 0.00 -0.00
-0.00 0.38 -0.38 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 1.00 -0.00
0.00 0.38 -0.37 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 1.00

difkaglka
0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 0.00 -0.00
0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00
0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00
-0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00
0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00

Compute uaka = vector of multibreed additive genetic predictions

uaka
22.40
0.63
7.12
10.59
14.04
15.01
2.20
17.12
17.89
9.16
8.45
7.59

Compute vepuaka = matrix of variance of errors of additive genetic predictions

vepuaka
95.16 32.17 59.40 44.23 63.97 75.87 49.23 59.48 55.96 63.08 42.22 59.07
32.17 32.85 30.08 20.34 30.10 31.28 23.07 26.67 28.14 29.89 20.96 30.40
59.40 30.08 62.94 35.60 47.20 59.54 41.34 44.14 43.56 52.75 35.90 47.60
44.23 20.34 35.60 42.51 33.95 40.06 26.51 38.21 34.02 34.29 26.38 32.55
63.97 30.10 47.20 33.95 61.12 57.10 39.44 43.15 46.82 53.41 33.55 47.82
75.87 31.28 59.54 40.06 57.10 82.78 47.04 51.52 50.31 59.45 43.08 59.47
49.23 23.07 41.34 26.51 39.44 47.04 50.36 34.12 34.18 41.87 26.89 39.10
59.48 26.67 44.14 38.21 43.15 51.52 34.12 59.58 46.56 43.75 32.39 41.57
55.96 28.14 43.56 34.02 46.82 50.31 34.18 46.56 60.01 44.81 31.85 41.72
63.08 29.89 52.75 34.29 53.41 59.45 41.87 43.75 44.81 72.00 34.50 49.27
42.22 20.96 35.90 26.38 33.55 43.08 26.89 32.39 31.85 34.50 43.41 33.61
59.07 30.40 47.60 32.55 47.82 59.47 39.10 41.57 41.72 49.27 33.61 61.80

Compute sepuaka = vector of standard errors of additive genetic predictions

sepuaka
9.76
5.73
7.93
6.52
7.82
9.10
7.10
7.72
7.75
8.49
6.59
7.86

Define kn = coefficient matrix of direct and maternal nonadditive genetic predictions

Assume that males will be mated to (1/2A 1/2B) females and viceversa

kn
  COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17 COL18
ROW1 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW2 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW3 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW4 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW5 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW6 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW7 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW8 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW9 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW10 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW11 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROW12 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

kn
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Compute kngl = kn*ginvlhs*lhs to check if functions in matrix kn are estimable

(kngl = kn if functions in kn are estimable)

kngl
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00

difknglkn
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00

Compute uakn = vector of multibreed nonadditive genetic predictions

uakn
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66
3.66

Compute vepuakn = matrix of variance of errors of nonadditive genetic predictions

vepuakn
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22

Compute sepuakn = vector of standard errors of nonadditive genetic predictions

sepuakn
2.87
2.87
2.87
2.87
2.87
2.87
2.87
2.87
2.87
2.87
2.87
2.87

Define kt = coefficient matrix of total direct and maternal genetic predictions

Assume that males will be mated to (1/2A 1/2B) females and viceversa

kt
  COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17 COL18
ROW1 0 1 -1 0.5 0 0 1 0 0 0 0 0 0 0 0 0 0 0
ROW2 0 0 0 0.5 0 0 0 1 0 0 0 0 0 0 0 0 0 0
ROW3 0 0.5 -0.5 0.5 0 0 0 0 1 0 0 0 0 0 0 0 0 0
ROW4 0 0.5 -0.5 0.5 0 0 0 0 0 1 0 0 0 0 0 0 0 0
ROW5 0 0.5 -0.5 0.5 0 0 0 0 0 0 1 0 0 0 0 0 0 0
ROW6 0 0.75 -0.75 0.5 0 0 0 0 0 0 0 1 0 0 0 0 0 0
ROW7 0 0.25 -0.25 0.5 0 0 0 0 0 0 0 0 1 0 0 0 0 0
ROW8 0 0.75 -0.75 0.5 0 0 0 0 0 0 0 0 0 1 0 0 0 0
ROW9 0 0.625 -0.625 0.5 0 0 0 0 0 0 0 0 0 0 1 0 0 0
ROW10 0 0.5 -0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 1 0 0
ROW11 0 0.375 -0.375 0.5 0 0 0 0 0 0 0 0 0 0 0 0 1 0
ROW12 0 0.375 -0.375 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 1

kt
0.00 1.00 -1.00 0.50 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 -0.50 0.50 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 -0.50 0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 -0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.75 -0.75 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.25 -0.25 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.75 -0.75 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.63 -0.63 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.50 -0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.38 -0.38 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.38 -0.38 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Compute ktgl = kt*ginvlhs*lhs to check if functions in matrix kt are estimable

(ktgl = kt if functions in kt are estimable)

ktgl
-0.00 1.00 -1.00 0.50 -0.00 0.00 1.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 -0.00 -0.00 0.50 -0.00 -0.00 -0.00 1.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00
-0.00 0.50 -0.50 0.50 -0.00 0.00 -0.00 -0.00 1.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.50 -0.50 0.50 -0.00 0.00 -0.00 -0.00 0.00 1.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00
-0.00 0.50 -0.50 0.50 -0.00 0.00 -0.00 -0.00 0.00 0.00 1.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 0.75 -0.75 0.50 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 1.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 0.25 -0.25 0.50 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 1.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 0.75 -0.75 0.50 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 1.00 -0.00 0.00 0.00 -0.00
0.00 0.63 -0.63 0.50 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 1.00 0.00 0.00 -0.00
-0.00 0.50 -0.50 0.50 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 1.00 0.00 -0.00
-0.00 0.38 -0.38 0.50 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 1.00 -0.00
0.00 0.38 -0.38 0.50 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 1.00

difktglkt
-0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00
-0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00
-0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00
-0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 0.00 -0.00
0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00
-0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00
-0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00
0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00

Compute uakt = vector of multibreed total genetic predictions

uakt
26.06
4.29
10.78
14.25
17.70
18.68
5.86
20.78
21.55
12.82
12.11
11.25

Compute vepuakt = matrix of variance of errors of total genetic predictions

vepuakt
98.80 41.26 60.94 45.52 66.93 78.09 53.50 63.06 59.87 66.33 44.73 62.64
41.26 47.40 37.07 27.09 38.51 38.95 32.80 35.70 37.51 38.60 28.93 39.42
60.94 37.07 62.38 34.80 48.06 59.66 43.52 45.62 45.38 53.90 36.32 49.07
45.52 27.09 34.80 41.47 34.57 39.94 28.43 39.44 35.60 35.20 26.55 33.78
66.93 38.51 48.06 34.57 63.40 58.65 43.03 46.05 50.05 55.98 35.39 50.70
78.09 38.95 59.66 39.94 58.65 83.59 49.90 53.69 52.81 61.29 44.18 61.62
53.50 32.80 43.52 28.43 43.03 49.90 55.27 38.33 38.72 45.75 30.04 43.30
63.06 35.70 45.62 39.44 46.05 53.69 38.33 63.10 50.42 46.95 34.84 45.08
59.87 37.51 45.38 35.60 50.05 52.81 38.72 50.42 64.21 48.34 34.64 45.56
66.33 38.60 53.90 35.20 55.98 61.29 45.75 46.95 48.34 74.87 36.63 52.45
44.73 28.93 36.32 26.55 35.39 44.18 30.04 34.84 34.64 36.63 44.81 36.06
62.64 39.42 49.07 33.78 50.70 61.62 43.30 45.08 45.56 52.45 36.06 65.30

Compute sepuakt = vector of standard errors of total genetic predictions

sepuakt
9.94
6.88
7.90
6.44
7.96
9.14
7.43
7.94
8.01
8.65
6.69
8.08