ANIMAL BREEDING NOTES

CHAPTER 15

SIRE-MATERNAL GRANDSIRE APPROXIMATION TO THE MATRIX OF ADDITIVE RELATIONSHIPS AND ITS INVERSE

Definition of the sire-maternal grandsire model

Models used to analyze animal breeding data are often simpler versions of a complete model. These models rest on simplifying assumptions made with respect to the data, whose objectives could be, for instance, to reduce computations or generate a better behaved set of mixed model equations. One possibility is to assume that:

- (i) parents have no records of their own, and
- (ii) dams are related only through their sires.

These simplifying assumptions reduce an animal model to a sire-maternal grandsire model. Because dams are ignored in A, a set of rules that account for sire (s) and maternal grandsire (mgs) contributions must be used to compute the matrix of additive relationships (A) and its inverse (A⁻¹). A model for the breeding value of an animal is:

$$u_{i} = \frac{1}{2} u_{s_{i}} + \frac{1}{2} u_{d_{i}} + \frac{1}{2} \varepsilon_{s_{i}} + \frac{1}{2} \varepsilon_{d_{i}}$$

$$E[u_{i}] = 0$$

$$var(u_{i}) = a_{ii} \sigma_{A}^{2}$$

$$= \left(1 + \frac{1}{2} a_{s_{i} d_{i}}\right) \sigma_{A}^{2}$$

$$= \left(1 + F_{i}\right) \sigma_{A}^{2}$$
[1]

where

 s_i = sire of animal i,

 $d_i = dam of animal i.$

Assuming that the sire and the dam of animal i have no records and that dams are unrelated except through their sires, model [1] can be written as:

$$u_{i} = \frac{1}{2}u_{s_{i}} + \frac{1}{2}\left[\frac{1}{2}u_{mgs_{i}} + \frac{1}{2}u_{mgd_{i}} + \frac{1}{2}\epsilon_{mgs_{i}} + \frac{1}{2}\epsilon_{mgd_{i}}\right] + \frac{1}{2}\epsilon_{s_{i}} + \frac{1}{2}\epsilon_{d_{i}}$$
 [2]

$$u_i = \frac{1}{2}u_{s_i} + \frac{1}{4}u_{mgs_i} + \phi_i$$

$$E[u_i] = 0$$

$$var(u_i) = \left(1 + \frac{1}{4} a_{s_i \, mgs_i}\right) \sigma_A^2$$
$$= \left(1 + F_i\right) \sigma_A^2$$

where

 mgs_i = maternal grandsire of animal i,

 mgd_i = maternal granddam of animal i,

$$\phi_i \qquad = \quad \frac{1}{4} \, u_{\text{mgd}_i} + \frac{1}{4} \, \epsilon_{\text{mgs}_i} + \frac{1}{4} \, \epsilon_{\text{mgd}_i} + \frac{1}{2} \, \epsilon_{s_i} + \frac{1}{2} \, \epsilon_{d_i}$$

Remarks:

$$\begin{split} F_i &= \frac{1}{2} a_{s_i d_i}, \\ &= \frac{1}{2} \bigg[\frac{1}{2} a_{s_i mgs_i} + \frac{1}{2} a_{s_i mgd_i} \bigg], \\ &= \frac{1}{4} a_{s_i mgs_i}, \text{ because, by assumption, } a_{s_i mgd_i} = 0. \end{split}$$

Derivation of the rules to compute the additive relationship matrix among sires and maternal grandsires directly

In matrix notation model [2] is:

$$u = \frac{1}{2} P_{s} u + \frac{1}{4} P_{m} u + \phi$$

$$u = \left(I - \frac{1}{2} P_{s} - \frac{1}{4} P_{m}\right)^{-1} \phi$$

$$E[u] = 0$$

$$var(u) = \left(I - \frac{1}{2} P_{s} - \frac{1}{4} P_{m}\right)^{-1} var(\phi) \left(I - \frac{1}{2} P_{s}' - \frac{1}{4} P_{m}'\right)^{-1}$$

$$= \left(I - \frac{1}{2} P_{s} - \frac{1}{4} P_{m}\right)^{-1} D\left(I - \frac{1}{2} P_{s}' - \frac{1}{4} P_{m}'\right)^{-1} \sigma_{A}^{2}$$

where

 $D = diag\{d_{ii}\}, d_{ii} = coefficient of var(\phi_i),$

u = vector of breeding values of males ordered so that sires and mgs' precede sons and
 maternal grandsons (mgsons),

 P_s = lower triangular matrix relating sires to sons. A row of P contains at most one non-zero element, i.e., a 1, in the column corresponding to the sire of a male, if it is known.

 $P_{\rm m}=1$ lower triangular matrix relating mgs' to mgsons. A row of P contains a 1 in the column of the mgs of a male if the mgs is identified or a 0 otherwise, and zeroes elsewhere.

 φ = vector of independent random variables, where

$$\phi_{i} = \frac{1}{4} u_{mgd_{i}} + \frac{1}{4} \epsilon_{mgs_{i}} + \frac{1}{4} \epsilon_{mgd_{i}} + \frac{1}{2} \epsilon_{s_{i}} + \frac{1}{2} \epsilon_{d_{i}}$$

if s_i and mgs_i are known

$$\phi_i = \frac{1}{2} u_{d_i} + \frac{1}{2} \varepsilon_{s_i} + \varepsilon_{d_i}$$

if si is known only

$$\phi_{i} \ = \ \frac{1}{2} u_{s_{i}} + \frac{1}{4} u_{mgd_{i}} + \frac{1}{4} \epsilon_{mgs_{i}} + \frac{1}{4} \epsilon_{mgd_{i}} + \frac{1}{2} \epsilon_{s_{i}} + \frac{1}{2} \epsilon_{d_{i}}$$

if mgs_i is known only

 $\phi_i \ = \ u_i \ \text{ if neither } s_i \text{ nor } mgs_i \text{ are known}$

Thus, the $var(\varphi_i) = d_{ii} \sigma_A^2$ are:

(i) if s_i and mgs_i are identified,

$$\begin{aligned} var(\phi_{i}) &= var\left(u_{i}\right) - var\left(\frac{1}{2}u_{s_{i}} + \frac{1}{4}u_{mgs_{i}}\right) \\ &= \left[\left(1 + \frac{1}{4}a_{s_{i}\,mgs_{i}}\right) - \left(\frac{1}{4}a_{s_{i}\,s_{i}} + \frac{1}{16}a_{mgs_{i}\,mgs_{i}} + \frac{1}{4}a_{s_{i}\,mgs_{i}}\right)\right]\sigma_{A}^{2} \\ &= \left[1 - \frac{1}{4}a_{s_{i}\,s_{i}} - \frac{1}{16}a_{mgs_{i}\,mgs_{i}}\right]\sigma_{A}^{2} \\ &= \left[1 - \frac{1}{4}(1 + F_{s_{i}}) - \frac{1}{16}(1 + F_{mgs_{i}})\right]\sigma_{A}^{2} \\ &= \left[\frac{11}{16} - \frac{1}{4}F_{s_{i}} - \frac{1}{16}F_{mgs_{i}}\right]\sigma_{A}^{2} \end{aligned}$$

where

$$F_{s_i} = \frac{1}{4} a_{ss_i \, mgss_i}$$

$$F_{\text{mgs}_i} = \frac{1}{4} a_{\text{smgs}_i \text{ mgsmgs}_i}$$

and subscripts,

$$ss_i = sire of s_i$$

$$mgss_i = mgs of s_i$$

$$smgs_i = sire of mgs_i$$

$$mgsmgs_i = mgs of mgs_i$$

(ii) if s_i is identified only,

$$\begin{split} var(\phi_i) &= var\left(u_i\right) \text{-} var\left(\frac{1}{2}u_{s_i}\right) \\ &= \left[1 \text{-} \frac{1}{4}a_{s_is_i}\right]\sigma_A^2 \\ &= \left[1 \text{-} \frac{1}{4}(1 + F_{s_i})\right]\sigma_A^2 \\ &= \left[\frac{3}{4} \text{-} \frac{1}{4}F_{s_i}\right]\sigma_A^2 \end{split}$$

(iii) if mgs_i is identified only,

$$\begin{split} var(\phi_i) &= var\left(u_i\right) \text{-} var\left(\frac{1}{4}u_{mgs_i}\right) \\ &= \left[1 \text{-} \frac{1}{16}a_{mgs_i mgs_i}\right] \sigma_A^2 \\ &= \left[1 \text{-} \frac{1}{16}\left(1 + F_{mgs_i}\right)\right] \sigma_A^2 \\ &= \left[\frac{15}{16} \text{-} \frac{1}{16}F_{mgs_i}\right] \sigma_A^2 \end{split}$$

(iv) if neither s_i nor mgs_i are identified,

$$var(\varphi_i) = var(u_i)$$

$$= [1]_{\sigma_A^2}$$
$$= \sigma^2$$

Because

$$var(u) = A \sigma_{A}^{2}$$

$$var(u) = \left(I - \frac{1}{2} P_{s} - \frac{1}{4} P_{m}\right)^{-1} D\left(I - \frac{1}{2} P_{s}^{2} - \frac{1}{4} P_{m}^{2}\right)^{-1} \sigma_{A}^{2}$$

$$\Rightarrow A = \left(I - \frac{1}{2} P_{s} - \frac{1}{4} P_{m}\right)^{-1} D\left(I - \frac{1}{2} P_{s}^{2} - \frac{1}{4} P_{m}^{2}\right)^{-1} \quad \text{if only males are included in A}$$

$$\Rightarrow A^{-1} = \left(I - \frac{1}{2} P_{s}^{2} - \frac{1}{4} P_{m}^{2}\right) D^{4} \left(I - \frac{1}{2} P_{s} - \frac{1}{4} P_{m}\right)$$

$$A^{-1} = D^{-1} \quad \text{diagonals}$$

$$- \frac{1}{2} D^{-1} P_{s} \quad \text{sons-sires}$$

$$- \frac{1}{2} P_{s}^{2} D^{4} \quad \text{sires-sons}$$

$$- \frac{1}{4} D^{4} P_{m} \quad \text{mgsons-mgs'}$$

$$- \frac{1}{4} P_{m}^{2} D^{4} \quad \text{mgs'-mgsons}$$

$$+ \frac{1}{4} P_{s}^{2} D^{-1} P_{s} \quad \text{sires-sires}$$

$$+ \frac{1}{8} P_{s}^{2} D^{-1} P_{m} \quad \text{sires-mgs'}$$

$$+ \frac{1}{8} P_{s}^{2} D^{-1} P_{s} \quad \text{mgs'-sires}$$

$$+\frac{1}{16}P_{\rm m}'D^{-1}P_{\rm m}$$
 mgs'-mgs'

where the right hand column indicates where the elements of the matrices on the left column are located in the A^{-1} matrix, e.g., sires-sires means that the matrix $\frac{1}{4}P_s$ ' $D^{-1}P_s$ contributes with nonzero elements to the sire-sire elements of A^{-1} . Based on the contributions of the component matrices, i.e., D^{-1} ,..., $\frac{1}{16}P_m$ ' $D^{-1}P_m$, to A^{-1} , the **rules to compute A^{-1}, using a list of males where sires and mgs' precede sons and mgsons**, are (Henderson, 1976):

(1) if s_i and mgs_i are known, add:

$$d_{ii}^{-1}$$
 to $i \times i$

$$-\frac{1}{2}d_{ii}^{-1}$$
 to $i \times s_i, s_i \times i$

$$-\frac{1}{4}d_{ii}^{\text{-}l} \qquad \text{ to } \quad i \times mgs_i, \, mgs_i \times i$$

$$\frac{1}{4}\,d_{ii}^{\text{-}1} \qquad \quad to \quad s_i \times s_i$$

$$\frac{1}{8}d_{ii}^{\text{-}1} \hspace{1cm} to \hspace{1em} s_i \times mgs_i, \hspace{1em} mgs_i \times s_i$$

$$\frac{1}{16}d_{ii}^{\text{-1}} \qquad \text{to} \quad mgs_i \times mgs_i$$

where

$$d_{ii}^{-1} = \left[1 - \frac{1}{4} a_{s_i s_i} - \frac{1}{16} a_{mg s_i mg s_i}\right]^{-1}$$

(2) if s_i is known only, add:

$$d_{ii}^{\text{-}1} \qquad \text{to} \quad i \times i$$

$$-\frac{1}{2}\,d_{ii}^{\text{-}1} \qquad \text{ to } \ i\times s_i,\, s_i\times i$$

$$\frac{1}{4}\,d_{ii}^{\text{-l}} \qquad \quad to \; s_i \times s_i$$

where

$$d_{ii}^{-1} = \left[1 - \frac{1}{4} a_{s_i s_i}\right]^{-1}$$

(3) if mgs_i is known only, add:

$$d_{ii}^{-1}$$
 to $i \times i$

$$-\frac{1}{4}d_{ii}^{\text{-}1} \qquad \text{ to } \quad i \times mgs_i, \, mgs_i \times i$$

$$\frac{1}{16}d_{ii}^{\text{-1}} \qquad \text{ to } \quad mgs_i \times mgs_i$$

where

$$d_{ii}^{-1} = \left[1 - \frac{1}{16} a_{mgs_i mgs_i}\right]^{-1}$$

(4) if neither s_i nor mgs_i are known, add:

$$d_{ii}^{\text{-}1} \qquad \text{to } i \times i$$

where

$$d_{ii}^{-1} = 1$$

Non-inbred population

If there is no inbreeding the d_{ii} and d_{ii}^{-1} are:

Ancestor(s) identified	d _{ii}	d _{ii} -1
s _i and mgs _i	$\frac{11}{16}$	16 11
s _i only	$\frac{3}{4}$	$\frac{4}{3}$
mgs _i only	$\frac{15}{16}$	$\frac{16}{15}$
none	1	1

So, the rules to build A^{-1} simplify to those of Henderson (1975):

(1) if s_i and mgs_i are known, add:

$$\frac{16}{11}$$
 to $i \times i$

$$-\frac{8}{11}$$
 to $i \times s_i$, $s_i \times i$

$$-\frac{4}{11} \quad \text{to } i \times mgs_i, \ mgs_i \times i$$

$$\frac{4}{11} \qquad \text{to } s_i \times s_i$$

$$\frac{2}{11}$$
 to $s_i \times mgs_i$, $mgs_i \times s_i$

$$\frac{1}{11} \qquad \text{to } mgs_i \times mgs_i$$

 $(2) \ \ if \ s_i \ is \ known \ only, \ add:$

$$\frac{4}{3}$$
 to $i \times i$

$$-\frac{2}{3}$$
 to $i \times s_i$, $s_i \times i$

$$\frac{1}{3}$$
 to $s_i \times s_i$

(3) if mgs_i is known only, add:

$$\frac{16}{15}$$
 to i × i

$$-\frac{4}{15}$$
 to $i \times mgs_i$, $mgs_i \times i$

$$\frac{1}{15}$$
 to $mgs_i \times mgs_i$

(4) if neither s_i nor mgs_i is known, add:

1 to
$$i \times i$$
.

Inbred population

If there is inbreeding in a population, then we need to know the diagonal elements of the A matrix to be able to compute the d_{ii} . Quaas' (1976) procedure to compute the diagonal of A, when males and females in the pedigree are accounted for, can be easily modified to the case when males are included in A only. Thus, to compute A^{-1} :

[1] Define:

u = vector of sums of squares of the elements of a row of L, where

$$L = \left(I - \frac{1}{2} P_s - \frac{1}{4} P_m \right)^{-1} D^{\frac{1}{2}}$$

v = vector containing the diagonal elements of L and also used to store the offdiagonal elements of L temporarily.

- [2] Order and number males from 1 to n, sires and mgs preceding sons and mgsons. Set the number of the unknown sires and mgs' to zero.
- [3] Process one male at a time, from male 1 to n. For the ith male, compute:

$$(a) \ v_i = c_{ii}$$

$$= \left[1 - \frac{1}{4}u_{s_i} - \frac{1}{16}u_{mgs_i}\right]^{\frac{1}{2}} \qquad \text{if } s_i, mgs_i > 0$$

$$= \left[1 - \frac{1}{4}u_{s_i}\right]^{\frac{1}{2}} \qquad \text{if } s_i > 0, mgs_i = 0$$

$$= \left[1 - \frac{1}{16}u_{mgs_i}\right]^{\frac{1}{2}} \qquad \text{if } s_i = 0, mgs_i > 0$$

$$= 1 \qquad \qquad \text{if } s_i = mgs_i = 0$$

$$(b) \ v_j = c_{ji} \qquad \text{for } j = i + 1, \dots, n$$

$$= \frac{1}{2}v_{s_j} + \frac{1}{4}v_{mgs_j} \qquad \text{if } i \le s_j, mgs_j$$

$$= \frac{1}{2}v_{s_j} \qquad \text{if } mgs_j < i \le s_j$$

$$= \frac{1}{4}v_{mgs_j} \qquad \text{if } s_j < i \le mgs_j$$

$$= 0 \qquad \text{if } s_j, mgs_j < i$$

$$(c) \ u_j = u_j + (v_j)^2 \qquad \text{for } j = i, \dots, n$$

$$(d) \ d_{ii}^{-1} = (v_i)^{-2}$$

(e) Add the contributions of the ith animal to A⁻¹ using the rules for the case of males included

in A only given previously. Use a matrix or the vectors of the a linked-list subroutine to sum and store the non-zero elements of A^{-1} . Store the row number, column number and the non-zero element after the n^{th} animal is processed.

Remarks:

[1] If a computer program for the sire-mgs approximation to A^{-1} is written, check for sire = mgs (i.e., sire-daughter matings). If $s_i = mgs_i$, add:

(i)
$$\left(\frac{1}{4} + 2\left(\frac{1}{8}\right) + \frac{1}{16}\right)d_{ii}^{-1} - \frac{9}{16}d_{ii}^{-1}$$
 to $s_i \times s_i \ (= mgs_i \times mgs_i)$ if $s_i \ (= mgs_i)$ is **inbred**

(ii)
$$\left(\frac{4}{11} + 2\left(\frac{2}{11}\right) + \frac{1}{11}\right) - \frac{9}{16}$$
 to $s_i \times s_i$ (= mgs_i × mgs_i) if s_i (= mgs_i) is **not inbred**.

- [2] The sire-mgs approximation to A:
 - [2.1] Treats full-sibs as paternal half-sibs, e.g.,

[2.2] Treats maternal half-sibs as mgs-grandprogeny, e.g.,

true pedigree sire-mgs approximation $s_1 \ d_1 \ s_2 \qquad mgs_i$ $\downarrow \quad \downarrow \quad \downarrow \quad \\ p_1 \ p_2 \qquad s_1 \ d_1 \ d_2 \ s_2$ $\downarrow \quad \downarrow \quad \downarrow \quad \\ p_1 \ p_2 \qquad p_2$

[2.3] is equal to an A that includes males and females, if:

- (a) all maternal granddams are base dams, i.e., unrelated and non-inbred, and
- (b) there are no maternal half-sibs, i.e., each dam has only one calf.

Example of A⁻¹ for the sire-mgs approximation

Animal	Sire	Mgs	
1			
2	1		
3		1	
4	3	2	
5	4	3	
6	4	4	

Here,

Computation of the d _{ii} using the sire-mgs version of Quaas' (1976) produced	cedure
---	--------

		Round (i)				
(j)	1	2	3	4	5	6
$u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6$	$ \begin{array}{c} 1.0 \\ (0.5)^2 \\ (0.25)^2 \\ (0.25)^2 \\ (0.1875)^2 \\ (0.1875)^2 \end{array} $	$\begin{aligned} &1.0 \\ &u_{2(1)} + 0.75 \\ &u_{3(1)} + (v_{3(2)})^2 \\ &u_{4(1)} + (v_{4(2)})^2 \\ &u_{5(1)} + (v_{5(2)})^2 \\ &u_{6(1)} + (v_{6(2)})^2 \end{aligned}$	$\begin{array}{c} 1.0 \\ 1.0 \\ u_{3(2)} + 0.9375 \\ u_{4(2)} + (v_{4(3)})^2 \\ u_{5(2)} + (v_{5(3)})^2 \\ u_{6(2)} + (v_{6(3)})^2 \end{array}$	$\begin{array}{c} 1.0 \\ 1.0 \\ 1.0 \\ u_{4(3)} + 0.6875 \\ u_{5(3)} + (v_{5(4)})^2 \\ u_{6(3)} + (v_{6(4)})^2 \end{array}$	$1.0 \\ 1.0 \\ 1.0 \\ 1.03125 \\ u_{5(4)} + 0.6796875 \\ u_{6(4)} + (v_{6(5)})^2$	1.0 1.0 1.0 1.03125 1.1328125 1.2578125
	1	2	3	4	5	6
V ₁ V ₂ V ₃ V ₄ V ₅ V ₆	$(1.0)^{1/2}$ 0.5 0.25 0.25 0.1875 0.1875	$ \begin{array}{c} 1.0 \\ (0.75)^{\frac{1}{2}} \\ 0 \\ \frac{1}{4}(0.75)^{\frac{1}{2}} \\ \frac{1}{8}(0.75)^{\frac{1}{2}} \\ 3/16(0.75)^{\frac{1}{2}} \end{array} $	1.0 (0.75) ^{1/2} (0.9375) ^{1/2} 1/2(0.9375) ^{1/2} 1/2(0.9375) ^{1/2} 3/8(0.9375) ^{1/2}	$ \begin{array}{c} 1.0 \\ (0.75)^{\frac{1}{2}} \\ (0.9375)^{\frac{1}{2}} \\ (0.6875)^{\frac{1}{2}} \\ \frac{1}{2}(0.6875)^{\frac{1}{2}} \\ \frac{3}{4}(0.6875)^{\frac{1}{2}} \end{array} $	$ \begin{array}{c} 1.0 \\ (0.75)^{\frac{1}{2}} \\ (0.9375)^{\frac{1}{2}} \\ (0.6875)^{\frac{1}{2}} \\ (0.6796875)^{\frac{1}{2}} \\ 0 \end{array} $	$ \begin{array}{c} 1.0 \\ (0.75)^{\frac{1}{2}} \\ (0.9375)^{\frac{1}{2}} \\ (0.6875)^{\frac{1}{2}} \\ (0.6796875)^{\frac{1}{2}} \\ (0.677734375)^{\frac{1}{2}} \end{array} $

Therefore, the matrix D⁻¹ is:

$$\mathbf{D}^{-1} = \begin{bmatrix} 1.0 \\ 0.75 \\ 0.9375 \\ 0.6875 \\ 0.6796875 \\ 0.677734375 \end{bmatrix}$$

$$D^{-1} = \begin{bmatrix} 1.0 \\ 1.3333 \\ 1.0667 \\ 1.4545 \\ 1.4713 \\ 1.4755 \end{bmatrix}$$

The matrix A⁻¹, using the sire-mgs rules, is:

$$A^{-1} = \begin{bmatrix} 1.4000 & -0.6667 & -0.2667 & 0 & 0 & 0 \\ & 1.4242 & 0.1818 & -0.3636 & 0 & 0 \\ & & 1.5223 & -0.5434 & -0.3678 & 0 \\ & & & 2.6523 & -0.7356 & -1.1066 \\ & & & & 1.4713 & 0 \\ & & & & & 1.4755 \end{bmatrix}$$

Recursive procedure to compute A for the sire-mgs approximation

The rules are based on approximating the additive relationship between two individuals by considering males only. Dams are assumed to be unrelated to sires and among themselves, **except** through their sires (the mgs' of calves). Thus,

(i) the additive relationship between two animals is approximately:

$$\begin{aligned} a_{ij} &= \frac{1}{2} \left[a_{is_j} + a_{id_j} \right] \\ \\ a_{ij} &= \frac{1}{2} \left[a_{is_j} + \frac{1}{2} \left(a_{imgs_j} + a_{imgd_j} \right) \right] \\ \\ a_{ij} &\approx \frac{1}{2} a_{is_j} + \frac{1}{4} a_{imgs_j} \end{aligned}$$

(ii) the coefficient of inbreeding of an animal is approximately:

$$\begin{split} F_i &= \frac{1}{2} \, a_{s_i d_i} \\ \\ F_i &= \frac{1}{2} \bigg[\frac{1}{2} \Big(a_{s_i \, mgs_i} + a_{s_i \, mgd_i} \Big) \bigg] \\ \\ F_i &\approx \frac{1}{4} \, a_{s_i \, mgs_i} \end{split}$$

Using the approximate formulae for a_{ij} and F_i , the following **recursive procedure to build a siremgs A** can be outlined:

[1] If s_i and mgs_i are known,

$$a_{ij} \ = \ \frac{1}{2} \, a_{is_j} + \frac{1}{4} \, a_{imgs_j}$$

$$a_{ii} = 1 + \frac{1}{4} \, a_{s_i \, mgs_i}$$

[2] If s_j is known only,

$$a_{ij} = \frac{1}{2} a_{is_j}$$

$$a_{ii} = 1$$

[3] If mgs_j is known only,

$$a_{ij} = \frac{1}{4} a_{imgs_j}$$

$$a_{ii} = 1$$

[4] If neither s_j nor mgs_j is known,

$$a_{ij} = 0$$

$$a_{ii} = 1$$

Example of a sire-mgs A matrix

The approximate additive genetic relationship matrix for the sire-mgs A⁻¹ example is:

		1	1	3 2	4 3	4 4
	1	2	3	4	5	6
1	1.0	0.5	0.25	0.25	0.1875	0.1875
2	0.5	1.0	0.125	0.3125	0.1875	0.234375
3	0.25	0.125	1.0	0.53125	0.515625	0.3984375
4	0.25	0.3125	0.53125	1.03125	0.6488375	0.7734375
5	0.1875	0.1875	0.515625	0.6484375	1.1328125	0.486328125
6	0.1875	0.234375	0.3984375	0.7734375	0.486328125	1.2578125

Also, to check $A^{-1} = (I - \frac{1}{2}P_s' - \frac{1}{4}P_m')D^{-1}(I - \frac{1}{2}P_s - \frac{1}{4}P_m)$, matrix A could have been computed as:

$$A = (I - \frac{1}{2} P_s - \frac{1}{4} P_m)^{-1} D (I - \frac{1}{2} P_s' - \frac{1}{4} P_m')^{-1}$$

where

$$(I - \frac{1}{2} P_s - \frac{1}{4} P_m)^{-1} = \begin{bmatrix} 1 \\ -\frac{1}{2} & 1 \\ -\frac{1}{4} & 0 & 1 \\ 0 & -\frac{1}{4} & -\frac{1}{2} & 1 \\ 0 & 0 & -\frac{1}{4} & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & -\frac{3}{4} & 0 & 1 \end{bmatrix}$$

and

$$D = \begin{bmatrix} 1.0 \\ 0.75 \\ 0.9375 \\ 0.6875 \\ 0.6796875 \\ 0.677734375 \end{bmatrix}.$$

References

Henderson, C. R. 1975. Inverse of a matrix of relationships due to sires and maternal grandsires. J. Dairy Sci. 58:1917-1921.

Henderson, C. R. 1975. Inverse of a matrix of relationships due to sires and maternal grandsires in an inbred population. J. Dairy Sci. 59:1585-1588.

Quaas, R. L. 1976. Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics 32:949-953.