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Experiments described in the present dissertation were designed with the overall objective 

of determining potential factors contributing to the phenomenon described in the literature of 

decreased oocyte and embryo competence to reach the blastocyst stage and increased incidence 

of apoptosis caused by heat shock. Focus was given to the role of oxygen in mediating the effects 

of heat shock in the oocyte and embryo and to ceramide as a signal potentially involved in 

induction of apoptosis in embryos. The effects of heat shock in the embryo were shown to be 

affected by oxygen concentrations. This was demonstrated in a series of experiments where heat 

shock at different stages of embryo development had more severe effects in reducing 

development and inducing apoptosis in high oxygen when compared to heat shock in low 

oxygen. The antioxidant dithiothreitol (DTT) attenuated the negative effects of heat shock in 

high oxygen in blastocyst development and blocked heat shock-induced apoptosis, suggesting 

that heat shock effects involve oxidative stress. The presence of a responsive signaling 

mechanism involving the sphingomyelin pathway involved in induction of apoptosis was 

demonstrated for the first time in the preimplantation embryo. The existence of this mechanism 

is indicated by the fact that ceramide, but not its inactive analogue dihydroceramide, induced 

apoptosis in a stage-specific manner and decreased embryo development. Further support is 
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provided by the fact that heat shock induced activity of neutral sphingomyelinase (nSMase), an 

enzyme responsible for cleaving sphingomyelin to yield ceramide.  

Regarding the effects of heat shock in the oocyte, it was demonstrated that heat shock 

effects were not dependent upon oxygen concentration as heat shock decreased oocyte 

competence to reach the blastocyst stage in high oxygen and at oxygen concentrations similar to 

the concentration found follicular fluid in vivo.  

Because results have previously demonstrated that heat stress can reduce blood flow to the 

reproductive tract, hypoxia was considered as one possible indirect effect of heat stress in 

reducing fertility. A field study was designed to determine changes in oxygen concentration in 

the follicular fluid of dominant pre-ovulatory follicles caused by acute heat stress. Oxygen 

concentration in the follicular fluid was not affected by heat stress. 

In summary results demonstrated that oxygen concentration determines the magnitude of 

deleterious effects of heat shock in embryo development and apoptosis, potentially due to 

oxidative stress. The demonstration of existence of a ceramide signaling mechanism in the 

embryo may help to further understand the mechanism by which heat shock and other stresses 

induce apoptosis in preimplantation embryos. In the oocyte, oxygen does not seem to influence 

the severity of effects of heat shock. Results from in vivo study established that follicular oxygen 

concentration is not affected by heat stress and therefore hypoxia is not a factor involved in 

decreased fertility observed during the hot months of the year. 
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CHAPTER 1 
INTRODUCTION 

Pregnancy is established when a competent oocyte is successfully fertilized and the zygote 

encounters a suitable environment that will nourish it and allow it to develop to birth. In a 

healthy and otherwise fertile female, environmental disturbances can occur at any time and 

compromise fertility by causing stresses that can act directly and indirectly on the developing 

and maturing oocyte and the developing embryo. One environmental factor that commonly 

affects reproductive performance is heat stress, defined as environmental conditions that make it 

difficult for animals to regulate their body temperature. Exposure of lactating dairy cows to an 

environment characterized by heat stress causes an increase in body temperature and a 

corresponding decrease in reproductive function that includes reduced expression of estrus 

(Thatcher and Collier 1986), altered follicular development (Badinga et al. 1993; Wolfenson et 

al. 1995; Trout et al. 1998; Wilson et al. 1998), decreased oocyte competence (Rocha et al. 1998; 

Roth et al. 2001a; Roth et al. 2002), reduced circulating concentrations of progesterone (Howell 

et al. 1994; Sartori et al. 2002a) and increased embryonic mortality (Putney et al. 1988a; Ealy et 

al. 1993; Sartori et al. 2002b). These actions of heat stress, which span a wide range in the 

reproductive life cycle, from oocyte growth and maturation to early embryo development, 

account for the large decrease in fertility during the hot months of the year (Elliott and Ulberg 

1971; Gwazdauskas et al. 1973; Badinga et al. 1985; Cavestany et al. 1985; Wolfenson et al. 

1988; Rocha et al. 1998; Al-Katanani et al. 1999). Importantly, the physiology and requirements 

of the oocyte and embryo change during the reproductive life cycle as does the 

microenvironment in which they reside. The outcome caused by heat shock is dependent, 

therefore, upon the interaction between the elevated temperatures to which the oocyte and 

embryo are exposed, the intrinsic properties of the oocyte and embryo itself (in turn affected by 
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stage of development) and the microenvironment of the reproductive tract (which may also be 

changed by heat stress).  

The decreased fertility caused by elevation in body temperature can be attributed to a 

variety of factors involving direct and indirect effects on the oocyte and the embryo. One 

important factor known to modulate embryonic performance in vitro is the oxygen environment 

surrounding the oocyte and the developing embryo. Understanding how the oxygen environment 

and the reduction/oxidation (redox) state of the oocyte and embryo interact to modify responses 

to heat shock may contribute to overall comprehension of the pathology of decreased fertility of 

lactating dairy cows during summer.  

Heat shock induces apoptosis in preimplantation bovine embryos in a mechanism that 

involves activation of caspase-9 followed by capsase-3, compatible to the mitochondrial intrinsic 

pathway of apoptosis. In different cell types, heat shock can cause increased production of 

ceramide, a second-messenger involved in early events of apoptosis. Identification of the 

presence of an active ceramide signaling mechanism in the preimplantation embryo could help 

elucidate the pathway by which different stressors (e.g. heat shock), induces apoptosis, and 

potentially open a new window of opportunity for developing strategies to reduce effects of heat 

shock and other stresses to the embryo. 

Objectives of this dissertation were to 1) determine the role of oxygen environment and 

oxidative stress in the effects of heat shock on development and apoptosis in the preimplantation 

embryos, 2) demonstrate the existence of an active ceramide signaling pathway in the bovine 

preimplantation embryo, 3) determine the role of oxygen environment and glucose concentration 

in the effects of heat shock on oocyte competence and 4) demonstrate if part of effects of heat 
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stress in reducing fertility during the summer are due to reduction in oxygen supply to the 

dominant pre-ovulatory follicle in the cow. 
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CHAPTER 2 
LITERATURE REVIEW 

Effects of Heat Stress on Fertility 

Factors extrinsic and intrinsic to the female can cause the environment surrounding the 

oocyte and the embryo to become adverse to developmental competency. Among these factors is 

an elevation in body temperature caused by maternal heat stress. Decreased fertility during 

periods of heat stress have been reported in a wide variety of species including cattle (Elliott and 

Ulberg 1971; Gwazdauskas et al. 1973; Badinga et al. 1985; Cavestany et al. 1985; Wolfenson et 

al. 1988; Rocha et al. 1998; Al-Katanani et al. 1999), pigs (Warnick et al. 1965) and mice 

(Matsuzuka et al. 2005a). 

By virtue of its high internal heat production, the lactating dairy cow is likely the animal 

that is most sensitive to disruption of fertility by heat stress. The phenomenon of reduced fertility 

of high producing dairy cows during summer has been described in several regions around the 

globe (Rocha et al. 1998; Al-Katanani et al. 1999; Rutledge et al. 1999; Zeron et al. 2001). 

Retrospective analysis of records provided by the Dairy Herd Improvement Association 

regarding first service from 8124 Holstein from Florida and South Georgia showed that 90-day 

non-return rate decreased during the summer. This decrease was greatest in South Florida, 

intermediate in North Florida and least in South Georgia. Furthermore, the decrease was 

dependent on milk production: cows with greater milk yield experienced a more severe summer 

decrease in fertility than cows with lower milk yields (Al-Katanani et al. 1999). These results 

suggest that as milk yield increases, susceptibility to heat stress will also increase. Such an 

association has also been observed historically in Spain (Lopez-Gatius 2003). As a result, heat 

stress is not a problem only for cows in warm regions of the world. Indeed, summer depressions 

in days open have been seen throughout the United States (Oseni et al. 2003).  



 

23 

In one of the early reports on the effects of heat stress in cattle (Dunlap and Vincent 1971) 

beef heifers exposed continuously to heat stress from Day 1 to Day 3 after breeding had 0% 

conception rate whereas heifers not exposed to heat stress had a 48% conception rate. 

Subsequently, Putney et al. (1988) performed a study where superovulated dairy heifers were 

exposed to a heat stress consisting of 16 hours at 30oC and 8 hours at 42oC each day from Day 1 

through Day 7 after artificial insemination (AI). Embryos collected from heat stressed heifers 

had decreased quality and were more retarded when compared to control heifers maintained 

continuously at 20oC.  

Rocha et al. (1998) reported that the number of oocytes classified as normal from Holstein 

cows subjected to ovum pick-up (OPU) and their competence to reach the blastocyst stage, was 

less during the hot time of the year when compared to oocytes collected during the cool season. 

Similarly, the percent of non-fertilized oocytes harvested from lactating cows five days after 

superovulation was greater than from non-lactating animals during the summer; this difference 

was not observed during the winter (Sartori et al. 2002b). Furthermore, the decreased 

competence of oocytes associated with heat stress can continue past summer months (Roth et al. 

2001a; Roth et al. 2002), indicating delayed effects of elevated temperature on oocyte 

competence. These delayed effects were also observed for synthesis of estradiol and 

androstenedione production in medium-size follicles (Roth et al. 2001b).  

Although the effects of heat stress are severe early in pregnancy, data from different 

species are indicative that these effects become milder as pregnancy advances. Exposure of ewes 

to heat stress from day 1 post-breeding to Day 24 of pregnancy reduced lambing rate when 

compared to control ewes or ewes exposed to heat stress from Day 5 to Day 24 (Dutt 1963). Ealy 

et al. (1993) exposed superovulated cows to heat stress for 7 hours on Days 1, 3, 5 or 7 after 
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insemination. Stage of development and viability at Day 8 were compromised only for embryos 

derived from cows exposed to heat stress on Day 1. Similar findings were also shown in swine 

(Tompkins et al. 1967).   

Consequences of Heat Shock for the Oocyte and Embryo 

Effects of Heat Shock on Oocyte Competence in the Bovine 

Experiments using cumulus-oocyte complexes (COCs) matured in vitro have been 

extensively used to demonstrate direct effects of heat shock on oocyte function. Heat shock at 40 

or 41oC during the first 12 hours of maturation caused nuclear maturation to arrest prior to 

initiation of meiosis II (Roth and Hansen 2005). Similar results have been described by others 

using bovine oocytes matured in vitro (Lenz et al. 1983; Payton et al. 2004) and mouse oocytes 

matured in vivo (Baumgartner and Chrisman 1987). Effects of heat shock can be mediated by 

alteration in spindle formation and disruption in chromosome alignment (Ju et al. 2005, Roth & 

Hansen 2005). Exposure of metaphase II oocytes to heat shock for 1 to 4 hours caused a 5-fold 

increase in spindles with altered morphology when compared to control oocytes (Ju et al. 2005). 

When oocytes were heat shocked at metaphase I, the majority of those that failed to reach 

metaphase II had spindle malformation (Roth & Hansen 2005). 

Heat shock during maturation can induce oocyte apoptosis (Roth and Hansen 2004a). 

Furthermore, the proportion of oocytes that become blastocysts after insemination is also 

reduced by heat shock during maturation (Edwards and Hansen 1996; Payton et al. 2004; Roth 

and Hansen 2004b; Edwards et al. 2005; Ju et al. 2005). However, experiments to determine the 

timing of block in development induced by heat shock in the oocyte have been controversial. In 

one study, heat shock reduced oocyte competence to cleave and develop to blastocyst stage 

(Roth and Hansen 2004b). In other studies, heat shock affected the proportion of embryos that 
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developed to the blastocyst stage but not cleavage rate (Edwards and Hansen 1996; Payton et al. 

2004; Edwards et al. 2005; Ju et al. 2005).   

Effects of Heat Shock on Development of the Bovine Preimplantation Embryo  

Like the oocyte, the preimplantation embryo is also susceptible to deleterious effects of 

heat shock. A large number of studies have aimed to understand the cellular and molecular 

mechanisms of responses of the embryo to elevated temperatures.  

As observed in vivo (Ealy et al. 1993), cultured bovine preimplantation embryos are less 

susceptible to deleterious effects of heat shock at later stages of development (Ealy et al. 1995b; 

Ju et al. 1999; Sakatani et al. 2004). For example, Edwards and Hansen (1997) reported that the 

effect of exposure of embryos to 41oC for 12 hours was greatest for two-cell embryos, 

intermediate for 4 to 8-cell embryos, and not apparent for morulae. Although embryos >16-cells 

are more resistant to heat shock, they are not impervious to elevated temperature. Experiments 

have demonstrated that the proportion of Day 4 or Day 5 bovine embryos that develop to the 

blastocyst stage can also be reduced by heat shock (Paula-Lopes and Hansen 2002a; Jousan and 

Hansen 2004).  

One of the reasons that heat shock at the two-cell stage reduces development likely 

involves ultrastructural changes in the embryo. Heat shock at 41oC caused a shift in localization 

of organelles located in the periphery towards the center of the cell (Rivera et al. 2003; Rivera et 

al. 2004c). This redistribution of organelles is caused by rearrangement of the cytoskeleton 

characterized by disruption of microtubules and microfilaments induced by heat shock (Rivera et 

al. 2004c). Heat shock can also cause an increase in the number of swollen mitochondria, 

compatible with membrane depolarization which can interfere with energy production by 

oxidative phosphorylation and potentially produce reactive oxygen species (ROS). Rivera et al. 

(2004a) evaluated the effect of heat shock on oxygen consumption of two-cell embryos. There 
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was a numerical decrease in oxygen consumption but this effect was not significant and there 

was no change in embryonic ATP content. 

Heat Shock and Apoptosis in Preimplantation Embryos 

Apoptosis is commonly observed in preimplantation embryos prior to or at the blastocyst 

stage (Jurisicova et al. 1996; Jurisicova et al. 1998; Long et al. 1998; Paula-Lopes and Hansen 

2002b; Gjørret et al. 2003). In the bovine, TUNEL-positive cells with condensed nuclei were 

first observed at the 6-cell stage in vitro and at the 21-cell stage in vivo (Gjørret et al. 2003).   

Recently, experiments demonstrated that heat shock can increase the incidence of TUNEL-

positive cells in bovine and porcine embryos (Paula-Lopes and Hansen 2002b; Paula-Lopes and 

Hansen 2002a; Jousan and Hansen 2004; Isom et al. 2007; Jousan and Hansen 2007; Loureiro et 

al. 2007). The ability to undergo apoptosis is developmentally regulated. Embryos heat shocked 

at the 2 and 4-cell stages of development failed to show an increase in percent of TUNEL-

positive cells or in group II caspase activity (which includes caspases-3, 7 and 2) whereas 

embryos >16-cells showed an increase in the percent of TUNEL-positive cells (Paula-Lopes and 

Hansen 2002a; Loureiro et al. 2007), caspase-9 (Loureiro et al. 2007) and group II caspase 

activity (Paula-Lopes and Hansen 2002b). The increase in caspase-9 and group II caspase 

activities and on the percent of TUNEL-positive cells was reduced by the use of the caspase 

inhibitors (Paula-Lopes and Hansen 2002a; Loureiro et al. 2007). 

It is interesting to note that developmental changes in embryonic capacity for induced 

apoptosis are not restricted to heat shock. Molecules shown to trigger apoptosis in somatic cells 

like tumor necrosis factor-α (TNF-α) (Ding and Yin 2004) and arsenic (Florea et al. 2005) can 

also induce apoptosis in embryos >16-cells but not in embryos at the two-cell stage (Krininger et 

al. 2002; Soto et al. 2003b). 
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Mechanism of Apoptosis Induced by Heat Shock 

General Features of Apoptosis 

Throughout development, multicellular organisms undergo changes in organization and 

cellular distribution to achieve the requisite phenotype. At times, some cells become unnecessary 

or redundant and others can be damaged due to intrinsic errors or due to external stress. 

Apoptosis is one process of programmed cell death that causes elimination of cells during 

developmental processes and after cell damage. In the apoptotic process, the cell undergoes 

transformations that allow its elimination with little or no compromise to cells in its 

surroundings.  

There are two main pathways that lead to apoptosis: the extrinsic or receptor-mediated 

pathway and the intrinsic or stress-mediated pathway. Both result in membrane blebbing, nuclear 

and chromatin condensation and fragmentation, shrinking of the cell, mitochondrial 

disintegration and formation of apoptotic bodies (budding off cellular portions). The driving 

force for these cellular changes is activation of a series of proteinases called caspases that cleave 

intracellular proteins. By 2001, 70 different caspase substrates had been identified and most of 

them had functions that could be correlated to phenotypical changes observed during caspase-

dependent apoptosis (reviewed in Nicholson 1999). 

The extrinsic pathway for apoptosis involves signaling for induction of apoptosis by 

extracellular regulatory ligands such as TNF-α, TRAIL, Fas and Cd95 (Nagata 1999; 

MacFarlane 2003; Peter and Krammer 2003; Rossi and Gaidano 2003; Ding and Yin 2004). 

Apoptosis is initiated by binding of these ligands to plasma membrane receptors of the TNF 

receptor family. Upon activation, a protein complex assembles forming the death inducing 

signaling complex (DISC). Adaptor proteins from the complex link the receptor to the initiator 
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caspases (2, 8 and/or 10). Once activated, initiator caspases interact with their substrates, the 

effector caspases (3, 7 and 6), which ultimately leads to cell death.  

The intrinsic pathway is not receptor dependent and is a cellular response to different types 

of stresses like radiation, heat stress, free radicals and others. Molecules of the Bcl-2 family are 

responsible for one of the initial steps of the intrinsic pathway. Upon stress, a pro-apoptotic 

member of the Bcl-2 family localized in the cytosol, Bax, undergoes conformational change and 

translocates to the mitochondrial membrane and cause mitochondrial membrane depolarization 

and apoptosis. Whether Bax will exert its pro-apoptotic effects depends on the presence of other 

members the Bcl-2 family like pro-apoptotic members Bad, NOXA and PUMA and the anti-

apoptotic members Bcl-2 and Bcl-XL. From specific interactions between these molecules, the 

decision to progress through the apoptotic cascade is made. Therefore, at least initially, the fate 

of the cell is dependent on the balance between these pro- and anti-apoptotic factors affecting the 

mitochondrial membrane (Tsujimoto 1998; Kuwana and Newmeyer 2003; Takahashi et al. 2004; 

Dejean et al. 2006; Kutuk and Basaga 2006; van Delft and Huang 2006). 

If pro-apoptotic factors predominate over anti-apoptotic ones, the initial signal generated as 

a result of stress leads to opening of permeability transition pores on the mitochondrial 

membrane and loss of mitochondrial membrane potential (Zamzami et al. 1996; Miyaguchi et al. 

2004; Piret et al. 2004). Some proteins otherwise confined to the intermembrane space leak into 

the cytoplasm and nucleus where they display their pro-apoptotic characteristics. Among these 

proteins, cytochrome c, AIF and Smac/diablo have been thoroughly studied. AIF can target the 

nucleus and cause chromatin condensation and DNA cleavage (Ye et al. 2002). Cytochrome c, 

along with Apaf-1, interacts with procaspase 9 and ATP to form the apoptosome (Quillet-Mary 

et al. 1997; Ruppitsch et al. 1997; Adrain and Martin 2001). Dimerized pro-caspase-9 is then 
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cleaved to caspase-9 which in turn activates effector caspases-3 and 7 (Srinivasula et al. 1998; 

Slee et al. 1999). Smac/diablo acts by binding and neutralizing the anti-apoptotic (i.e., caspase-

inhibitory) proteins of the IAP family like XIAP  (Roy et al. 1997; Du et al. 2000; Verhagen et 

al. 2000; Ekert et al. 2001). 

Although caspases have been demonstrated to be involved in cell death by apoptosis in 

several different models, cells have also mechanisms for inducing apoptosis in the absence of 

caspase activity. As mentioned above, AIF released from the mitochondria promotes apoptosis 

by directly targeting the DNA (Ye et al. 2002) with involvement of the co-factor cyclophilin A 

(Candé et al. 2004).  

Induction of Apoptosis by Heat Shock  

Heat shock induces apoptosis in several different cell types including female and male 

germ cells (Roth and Hansen 2004a; Jia et al. 2007), embryonic cells (Paula-Lopes and Hansen 

2002b; Paula-Lopes and Hansen 2002a; Jousan and Hansen 2004; Jousan and Hansen 2007; 

Loureiro et al. 2007), somatic cells like thymocytes (Troiano et al. 1995), astrocytes (Na et al. 

2001), cardiomyocytes (Qian et al. 2004) and Chinese hamster ovary cells (Bettaieb and Averill-

Bates 2005), as well as cancer cell lines like human leukemia cells HL-60 (Kondo et al. 2000a), 

human adenocarcinoma cervical cells  (Bettaieb and Averill-Bates 2005) and human leukemic 

monocyte lymphoma cells (Kim et al. 2005b).  

The intrinsic apoptotic pathway is thought to be activated during heat shock and activation 

of different steps of this pathway has been demonstrated experimentally to be induced by heat 

shock. Upon heat shock, conformational changes in Bax drives these molecules to translocate to 

the mitochondrial membrane (Bettaieb and Averill-Bates 2005; Stankiewicz et al. 2005) leading 

to membrane permeability transition (Qian et al. 2004; Bettaieb and Averill-Bates 2005; 

Stankiewicz et al. 2005) and release of pro-apoptotic factor cytochrome-c (Mirkes and Little 
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2000; Little and Mirkes 2002; Qian et al. 2004; Bettaieb and Averill-Bates 2005; Wada et al. 

2005). Cytochrome c then binds to cytoplasmic molecules Apaf-1, ATP and pro-caspase-9 

(Quillet-Mary et al. 1997; Ruppitsch et al. 1997; Adrain and Martin 2001) leading to cleavage of 

pro-caspase-9 and formation of active caspase-9 (Enomoto et al. 2001; Zhang et al. 2003; 

Bettaieb and Averill-Bates 2005). Once activated, caspase-9 can activate caspase-3 (Mirkes et al. 

2001; Qian et al. 2004) leading to cell death associated with the hallmarks of apoptosis. 

In preimplantation bovine embryos, the Bax gene is expressed and higher expression levels 

were correlated with slow developmental speed (Gutiérrez-Adan et al. 2004). The anti-apoptotic 

molecule Bcl-2 was shown to be high in normal embryos showing little fragmentation and low in 

fragmented embryos (Yang and Rajamahendran 2002). Following mitochondrial depolarization, 

cytochrome c and Smac-diablo were released into the cytosol in fragmented murine embryos and 

after treatment with staurosporine (Honda et al. 2005). The direct involvement of Bcl-2 

molecules and cytochrome c in heat shock-induced apoptosis in preimplantation embryos has yet 

to be determined. However, as mentioned in section “Heat shock and apoptosis in 

preimplantation embryos”, the fact that heat shock-induced apoptosis causes an increase in 

caspase-9 activity (Loureiro et al. 2007, Brad and Hansen, unpublished) and that caspase-9 

inhibitor can block apoptosis induced by heat shock (Loureiro et al. 2007) is strong evidence of 

the involvement of the mitochondrial intrinsic pathway in this process.  

The Role of Ceramide in Heat Shock-Induced Apoptosis 

While it is known that heat shock induces apoptosis via mitochondrial depolarization, the 

initial signal through which heat shock causes this effect on the cell is not well established.  

Available evidence suggests ceramide and ROS may play a crucial role in initial signaling 

events. Indeed, evidence exists that the sphingolipid ceramide plays a central role as a second 

messenger in many kinds of stress-induced apoptosis such as heat shock, ultra-violet radiation, 
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cytotoxic drugs, and free radicals (reviewed in Basu and Kolesnick 1998, Pettus et al. 2002, 

Kolesnick and Fuks 2003, Ruvolo 2003, Goldkorn et al. 2005, Taha et al. 2006). Exogenous 

ceramide can induce apoptosis in many different cell types such as human neuroblastoma cell 

line (Ito et al. 1999), pro-monocytic cells (Ji et al. 1995), lymphoma cells (Susin et al. 1997), 

keratinocytes (Di Nardo et al. 2000), and chicken oviduct cells (Kim et al. 2005c). Details of the 

involvement of ceramide in apoptosis, including its role in apoptosis induced by heat shock, are 

provided in this section.  

Sphingomyelin, Sphingomyelinases and Ceramide Formation  

There are two main pathways that lead to formation of ceramide. The first involves 

hydrolysis of sphingomyelin via acidic and neutral sphingomyelinases (SMases). The second 

involves de novo synthesis via sphingosine catabolism (Andrieu-Abadie and Levade 2002). 

Other apparently secondary pathways are involved in ceramide synthesis as well.  

Sphingomyelin is composed of ceramide linked to phosphocoline via a phosphodiester 

bond (Fahy et al. 2005). Sphingomyelin hydrolysis is performed by several sphingomyelin-

specific phospholipases C (PLCs), the SMases, which can cleave the phosphodiester bond 

yielding ceramide and phosphocoline. The variants of SMase differ primarily in their catalytic 

properties and subcellular localization, and regulation. Acidic (or acid) SMase (aSMase) is 

ubiquitous and localized in lysosomes and endosomes where it performs metabolic degradation 

of sphingomyelin at a pH optimum around 5 (Kolesnick and Fuks 2003). Deficiency of this 

enzyme causes the lethal Niemann-Pick hereditary disease that results in accumulation of 

sphingomyelin in lysosomes (Elleder 1989). aSMase was the first of the SMases to be cloned and 

sequenced (Quintern et al. 1989) and an aSMase knockout mouse model was developed by 

Otterbach and Stoffel (1995).  
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Because of the existence of the mouse knockout model and the Niemann-Pick disease in 

humans, aSMase has been the best studied of the SMases to date. A secreted form of aSMase 

derived from the same gene as the lysosomal aSMase has also been described (Schissel et al. 

1996) but the function of this enzyme is not yet clear. 

The other major SMase has basically the same function of aSMase; however, it is active 

under a pH optimum around 7.4 and has therefore been termed neutral SMase (nSMase). The 

Mg2+-dependent nSMase resides in the cell membrane (Chatterjee 1993), where most of the 

sphingomyelin is located. A soluble nSMase Mg2+-independent has also been characterized and 

is localized in the cell cytoplasm (Okazaki et al. 1994).  

Ceramide Signaling 

Several lines of evidence exist to demonstrate that ceramide is a molecule capable of 

inducing apoptosis. Experiments have demonstrated that exposure to ceramide is sufficient to 

induce apoptosis in different cell types (Obeid et al. 1993; Jarvis et al. 1994; Dbaibo et al. 1995; 

Ji et al. 1995; Pruschy et al. 1999; Di Nardo et al. 2000).  

Different cell stressors like TNF-α, radiation, ultraviolet-A rays (UVA) and heat shock can 

induce ceramide generation via activation of aSMase and nSMase in non-embryonic cells. When 

cells from wild-type mice were exposed to UVA, an increase in aSMase activity was observed 

followed by ceramide generation and activation of c-Jun N-terminal kinase (JNK). In contrast, 

cells from aSMase-deficient mice did not undergo apoptosis induced by UVA light (Zhang et al. 

2001). There was an increase in activity of nSMase and ceramide formation when human breast 

adenocarcinoma cells were treated with TNF-α (Luberto et al. 2002). Similar studies using 

different cell types showed comparable effects of TNF-α on ceramide formation (Garcia-Ruiz et 

al. 1997; Bulotta et al. 2001).  
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Heat shock can also induce ceramide formation (Chang et al. 1995; Verheij et al. 1996; 

Kondo et al. 2000a; Kondo et al. 2000b; Jenkins et al. 2002). In an experiment by Verheij et al. 

(1996), exposure of cells of the human leukemic monocyte lymphoma cell line U937 to a severe 

heat shock of 45 oC for 30 minutes caused a significant increase in ceramide formation. 

Similarly, ceramide accumulated in a temperature-dependent manner when human leukemia 

cells HL-60 were exposed to heat shock of 40, 42 and 44 oC for 30 minutes and this increase in 

ceramide was paralleled by a decrease in sphingomyelin content and increase in nSMase activity 

(Kondo et al. 2000a). About 20% of cells were already apoptotic 4 hours after exposure to 40oC 

(Kondo et al. 2000a). Chung et al. (2003) found that exposure of HL-60 cells to 42oC for 1 hour 

caused an increase in both nSMase and aSMase and further increase in temperature to 44oC 

caused an even greater increase in aSMase.  

Inhibitors of nSMase (Luberto et al. 2002; Czarny and Schnitzer 2004; Claus et al. 2005; 

Wu et al. 2005; Peng et al. 2006; Sakata et al. 2007) and aSMase (Sortino et al. 1999; Deigner et 

al. 2001; Pru et al. 2002; Hara et al. 2004b; Miyoshi et al. 2004) have been used to study the role 

of ceramide in cell signaling and stress-induced apoptosis. Addition of a nSMase inhibitor 

blocked initial accumulation of ceramide induced by TNF-α and decreased cytochrome-c release, 

induction of caspase-9 activity and nucleus condensation (Luberto et al. 2002). In another study, 

there was an increase in ceramide formation when human glioma cells were exposed to γ-

radiation and this increase was suppressed by an aSMase inhibitor (Hara et al. 2004d). 

The use of cells derived from patients with Niemann-Pick disease and from aSMase 

knockout mice has yielded further insight regarding the role of aSMase in cell signaling of 

apoptosis. Lymphoblasts from human patients with Niemann-Pick disease were resistant to 

radiation-induced apoptosis; restoration of aSMase activity by retroviral transfer of human 
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aSMase cDNA reversed the lack of effect of radiation on these cells (Santana et al. 1996).  

Likewise, mice deficient in aSMase activity were resistant to radiation-induced short term death 

(Garcia-Barros et al. 2003). “Spontaneous” oocyte apoptosis was also aSMase dependent (Morita 

et al. 2000). The proportion of fetal oocytes with characteristics of apoptosis was less for aSMase 

knockout mice when compared to wild-type mice (Morita et al. 2000). Additionally, oocyte 

apoptosis induced by cancer therapeutic drug doxorubicin was largely suppressed in mice 

lacking the gene for aSMase (Morita et al. 2000). 

Despite the extensive data that aSMase is involved in apoptosis signaling, some 

experiments do not support such a role. Ségui et al. (2000) found that TNF-α was unable to 

trigger sphingomyelin turnover and ceramide formation in a sphingomyelin pool present in 

acidic lysosomal cell compartments. Furthermore, accumulation of ceramide in the lysosomes 

(similar to that which occurs when aSMase activity is increased) observed in cells from Farber 

disease patients (genetically deficient in acid ceramidase which is responsible for ceramide 

degradation in the lysosomes) did not show increased sensitivity to different apoptosis-inducing 

agents (TNF-α, daunorubicin, ionizing radiation and Fas ligand) when compared to controls. In 

another series of experiments, stress stimuli such as anthracyclines, ionizing radiation, and Fas 

ligand triggered similar apoptotic hallmarks in normal and aSMase-deficient cell lines derived 

from Niemann-Pick disease patients (Bezombes et al. 2001b).  

The other form of ceramide accumulation possibly involved in apoptosis is via the de novo 

synthesis of ceramide. De novo synthesis of ceramide is catalyzed by ceramide synthase and 

other enzymes and was shown to increase in response to the anticancer drug daunorubicin 

(Boland et al. 1997) and in response to heat shock in mammalian cells (HL-60) and in the yeast 

Saccharomyces cerevisiae (Jenkins et al. 1997; Jenkins et al. 2002).  



 

35 

One of the ways in which ceramide can be metabolized is by the action of the enzyme 

ceramidase. The product of this enzyme, sphingosine, is further metabolized into sphingosine-1-

phosphate (S1P) through phosphorylation by sphingosine kinase (Pyne and Pyne 2000). The 

ratio between ceramide and S1P (the "ceramide/S1P rheostat") seems to be an important 

determinant of cell fate (Cuvillier et al. 1996; Kester and Kolesnick 2003). An increase in the 

ratio of S1P:ceramide is associated with protection from several stresses. For example, S1P 

blocked effects of radiation in vivo on oocyte competence, as determined by increased capacity 

to reach the blastocyst stage after fertilization, in mice (Morita et al. 2000). Also, treatment of 

cultured bovine cumulus oocyte complexes (COCs) with S1P reduced effects of heat shock on 

apoptosis and reduced capacity for cleavage and development after fertilization (Roth and 

Hansen 2004b).  

Activation of Downstream Apoptotic Pathways by Ceramide 

Recently, ceramide and ROS have been observed to participate together in cellular 

responses leading to stress-induced apoptosis in processes involving mitochondria. Di Paola et 

al. (2000) showed that both short-chain (C(2)-ceramide) and long-chain (C(16)-ceramide) 

ceramides induced ROS production and cytochrome c release from isolated rat and bovine 

cardiac mitochondria. Similarly, very low concentrations of C(2)-ceramide (0.25 μM) induced 

ROS production from isolated mitochondria (Garcia-Ruiz et al. 1997). In fact, ceramide can 

target the mitochondrial membrane and form pores through which molecules like cytochrome c 

can leak out (Siskind et al. 2002; Siskind et al. 2006) and contribute to the apoptotic signaling 

cascade.  

Ceramide can also induce ROS production in cells. Treatment of neuronally differentiated 

PC12 cells with exogenous C(2)-ceramide caused a significant increase in ROS production that 

peaked at 6 hours of exposure to the sphingolipid and caused cell death by apoptosis (France-
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Lanord et al. 1997). The increase in ROS was inhibited by the mitochondrial complex I inhibitor 

Amytal indicating that ROS were of mitochondrial origin. Similar results regarding ceramide-

induced ROS production were seen in studies from Quilet-Mary et al. (1997) and Takao et al. 

(2000). Additionally, inhibitors of aSMase abolished effects of TNF-α on formation of ROS and 

cell death in U937 human myeloid leukemia cells (Guidarelli et al. 2001). Apoptosis induced by 

exposure to C(2)-ceramide involved events downstream mitochondria, like activation of caspase-

9 and caspase-3 (Ito et al. 1999; Movsesyan et al. 2002) with no effect in activity of caspase-8 

(Movsesyan et al. 2002).  

Other mechanisms of action have been proposed on how ceramide induces apoptosis. 

Verheij et al. (1996) showed that heat shock can induce ceramide formation, activation of the 

stress activated protein kinase/c-jun N-terminus kinase (SAPK/JNK), and trigger apoptosis in 

U937 human monoblastic leukaemia and bovine aorta endothelial cells. It was also shown that 

C(2)-ceramide can activate SAPK in a concentration-dependent manner and induce apoptosis 

(Verheij et al. 1996; Ahn et al. 1999). Zanke et al. (1996) showed that  cells expressing dominant 

negative SEK (SAPK-kinase) mutant failed to undergo apoptosis induced by heat shock. 

Together, these data suggest that at least in some cells, heat shock can induce apoptosis by 

activating SAPK/JNK, and that ceramide might be involved in this process. In this scenario, it is 

possible that induced ceramide can activate SAPK/JNK which in turn can downregulate Bcl-2 

allowing pro-apoptotic Bad to target mitochondria leading to apoptosis (Basu and Kolesnick 

1998).   

The tumor suppressor gene p53 has also been implicated in regulation of ceramide induced 

cell death. However the dependence upon this transcription factor varies among different cell 

types and stressors. p53 has been shown to be downstream (Kim et al. 2002) or upstream 
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(Sawada et al. 2002) of ceramide production. In addition, p53 has been shown to be necessary 

for ceramide-induced apoptosis (Sawada et al. 2001; Kim et al. 2002), to have no role in 

ceramide-induced apoptosis (as in the case of fenretinide, an anti-cancer drug that causes 

apoptosis by inducing ceramide production) (Corazzari et al. 2005), or even to protect cells from 

apoptosis induced by ceramide in γ-irradiated cells through inhibition of aSMase (Hara et al. 

2004c). 

ROS and Ceramide: Reciprocal Role in Cell Signaling  

While ceramide can induce ROS production as described above, the reciprocal also seems 

to be true. Evidence is provided by experiments where antioxidants suppressed ceramide 

formation. N-acetyl-cysteine inhibited TNF-α-induced sphingomyelin turnover in rat primary 

astrocytes (Singh et al. 1998) and ceramide production in A549 human lung adenocarcinoma 

cells (Sultan et al. 2006). Antioxidants N-acetylcysteine and pyrrolidine dithiocarbamate 

prevented ceramide formation and apoptosis induced by the anti-cancer drugs daunorubicin 

(Mansat-de Mas et al. 1999) and 1-ß-D-arabinofuranosylcytosine (Ara-C) (Bezombes et al. 

2001a) while vitamin E prevented ceramide formation and apoptosis in human keratinocytes 

exposed to UVA radiation (Maziere et al. 2001).  

In other experiments, exposure of cells to exogenous ROS caused an increase in 

intracellular ceramide and apoptosis (Goldkorn et al. 1998; Lavrentiadou et al. 2001; Martín et 

al. 2002). Hence, whether ceramide participates in the apoptotic cascade and is localized 

upstream or downstream of ROS generation may depend largely on the cell type and the specific 

tress. Determining the presence of ceramide signaling mechanism in the preimplantation embryo 

would provide further understanding of the regulation of apoptosis during early development.  
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Importance of Oxygen Metabolism and Redox Status in Cell Viability 

Oxygen and Oxidative Stress 

Aerobic organisms use oxygen to produce energy via oxidative phosphorylation. The 

process of oxidative phosphorylation consists of series of biochemical reactions that culminates 

with the reduction of oxygen molecules to water (Klingenberg 1975; Babcock and Wikstrom 

1992). In the presence of little or no oxygen, energy production is mainly dependent in 

glycolysis alone (Du and Wales 1993).  

During the Krebs cycle, acetyl-coA derived from glycolysis or fatty acid oxidation is 

oxidized to re-generate NADH from NAD+ or FADH2 (Moreno-Sanchez et al. 1990; Rustin et 

al. 1997). Electrons from the NADH and FADH2 molecules flow through the respiratory chain in 

the mitochondrial inner membrane and this flow is used to drive the protons from the 

mitochondrial matrix to the intermembrane space (Wikstrom 1984; Moreno-Sanchez et al. 1990; 

Sherwood and Hirst 2006). An energy potential accumulates due to electrical and pH differential 

between the matrix and the intermembrane space and the protons flow back into the matrix 

through the ATP-producing molecule, ATP synthase (Abrahams et al. 1994; Das 2003).  

The role of oxygen in this process is to function as the acceptor of the electrons that flow 

through the respiratory chain, which together with protons will generate water. To be fully 

reduced to water, each oxygen molecule must receive 4 electrons in a stepwise sequence at the 

complex IV of the respiratory chain (Brunori and Wilson 1995; Wikstrom et al. 2005). However, 

not all oxygen molecules are fully reduced to water. These partially reduced oxygen molecules 

are the above mentioned ROS, more chemically reactive than oxygen, which must be eliminated 

before reacting and damaging other molecules within the cell. Although ROS have important 

roles in cell signaling and other biological processes (Roth and Droge 1987; Bae et al. 1997; 
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Humphries et al. 2006), excessive ROS, if not neutralized by antioxidants, cause oxidative stress 

(Halliwell and Aruoma 1991; Ikeda et al. 1999; Lord-Fontaine and Averill-Bates 2002).  

In case the cell experiences stress, the levels of ROS can increase and overwhelm the 

intracellular antioxidant system. Oxidative stress is characterized by several kinds of damage 

caused by modifications of vital molecules like DNA (Abe et al. 1995; Dizdaroglu et al. 2002; 

Van Remmen et al. 2003), proteins (Kishido et al. 2007), including enzymes involved in ROS 

detoxification (Fujii and Taniguchi 1999) and lipids (Alvarez and Storey 1985), which ultimately 

cause cell death. Among the ROS, superoxide radical (O2
·--), hydrogen peroxide (H2O2) and 

hydroxyl radical (OH˙) are the most abundant and best characterized examples and are mostly 

derived directly or indirectly from mitochondrial respiration (oxidative phosphorylation). 

Importantly, increased ROS will change the redox state of the cell to a more oxidizing state, 

causing modifications in the cell that can affect cell functions like energy production and 

signaling mechanisms without necessarily causing, for example, irreversible protein damage 

(Nulton-Persson and Szweda 2001; Ghezzi et al. 2005; Humphries et al. 2006).  

Redox Homeostasis and Antioxidant Machinery 

Redox homeostasis within the cell must be maintained by the complex array of enzymatic 

and non-enzymatic antioxidants which function is to transform highly reactive molecules in inert 

substances. Redox state is determined by the balance of ROS producing reactions and ROS 

removing reactions. The general concepts discussed below were based on reviews focused in the 

understanding of oxidative stress (Nordberg and Arner 2001; Fleury et al. 2002; Moldovan and 

Moldovan 2004; Agarwal et al. 2005; Le Bras et al. 2005; Halliwell 2006; Valko et al. 2007).   

Superoxide is considered the primary ROS in cell biology and is formed in different 

reactions, either as a by-product, in mitochondrial electron transport chain, or by enzymes like 

cyclooxygenase, lypoxigenase and xantine oxidase when oxygen molecules are reduced by 
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gaining one electron. Several others ROS derive from initial formation of superoxide as this 

molecule is further reduced by gaining more electrons. Although ROS are necessary and play 

important roles in cell signaling, if ROS production exceeds ROS removal, oxidative stress takes 

place. These reactive molecules interact with proteins, lipids and DNA causing modifications 

that ultimately can lead to cell death.  

The ROS removal is accomplished by the antioxidant machinery, molecules displaying 

specialized functions to act at specific stages of oxidative processes. These molecules can be:  

• Enzymes like superoxide dismutase and superoxide reductase, which reduce superoxide to 
hydrogen peroxide, and catalase, peroxiredoxin and glutathione peroxidase which can all 
reduce hydrogen peroxide to water;  

• ROS scavengers like glutathione (GSH), ascorbic acid and vitamin E that are directly 
oxidized to clear ROS from the cell;  

• Molecules that repair actions of ROS on lipids and peptides/proteins like peroxiredoxin, 
glutathione peroxidase, glutaredoxin, glutathione transferase, thioredoxin and thioredoxin 
reductase.  

One key component of the antioxidant machinery is GSH, which is an abundant tripeptide 

(glutamic acid, cysteine, and glycine) that features the thiol (-SH) of cysteine as its active group. 

It is present in the cytoplasm and in the mitochondria (Mbemba et al. 1985) and participates in 

different ways to maintain cell redox homeostasis. When needed, GSH works as an electron 

donor and is oxidized to GSSG (Verbunt et al. 1995; Enomoto et al. 2001). GSH functions to 

reduce proteins to form the reversible S-glutathionylated proteins (Ghezzi and Bonetto 2003), 

preventing further oxidation of the protein to the irreversible and inactivating formation of 

sulphinic and sulphonic derivates (Giustarini et al. 2004). GSH also participates as substrate in 

reactions catalyzed by glutathione peroxidase (De Haan et al. 2003).  

To maintain redox state, GSSG must be reduced back to GSH by glutathione reductase 

(Smith et al. 1987; Verbunt et al. 1995) which requires NADPH reducing equivalents produced 
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at different steps of the pentose phosphate pathway (PPP) by utilization of glucose. In absence of 

glucose, restoration of GSH is delayed or impaired due to deficiency in NADPH (Kussmaul et al. 

1999). Glucose-6-phosphate dehydrogenase (G6PDH) is the rate limiting enzyme of the PPP that 

converts glucose-6-phosphate into 6-phosphoglucolactone generating NADPH from NADP+. 

Deletion of the gene encoding G6PDH is lethal to the mouse embryo when exposed to oxygen 

(Longo et al. 2002). Furthermore, embryonic stem cells lacking G6PDH have severely reduced 

ability to form embryoid bodies; formation of embryoid bodies can be restored by reducing 

oxygen concentration in the culture environment (Longo et al. 2002). HEK 293 cells (embryonic 

kidney cell line) overexpressing the mitochondrial NADP+ - dependent isocitrate dehydrogenase 

(IDPm; enzyme necessary to produce NADPH from NADP+) had higher resistance to oxidative 

stress induced by heat shock (Kim et al. 2005a). These cells showed lower protein oxidation, 

lipid peroxidation and oxidative DNA damage as well as an increase in the NADPH pool and 

GSH recycling.  

Oxygen, Oxidative Stress and the Developing Embryo 

Oocyte Maturation and Redox Status  

The COC is a large structure (300-500 µm) (Hirao et al. 2004; Sutton-McDowall et al. 

2004), encompassing thousands of somatic cells surrounding the oocyte in several layers 

(Hashimoto et al. 1998; D'Alessandris et al. 2001). In vivo, studies have shown that glucose 

concentration in the follicular fluid of pre-ovulatory bovine follicles ranges between 3.9 and 4.9 

mM (Iwata et al. 2004; Orsi et al. 2005) which is similar to the concentration present in the 

maturation medium (5.6 mM) although much greater than that present at the end of maturation 

(1.5 mM) after consumption by the cumulus oocyte complex (Sutton-McDowall et al. 2004). The 

in vivo oxygen concentration in the bovine pre-ovulatory follicle has not been determined yet.  
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In vitro, cumulus cells utilize glucose to produce ATP via glycolysis and oxidative 

phosphorylation in the presence of oxygen. Glucose is also used for synthesis of extracellular 

matrix and reducing agents like NADPH by the PPP (Downs et al. 1998; Cetica et al. 2002). If 

glucose availability is limited, several aspects of intermediary metabolism, as mentioned above, 

are potentially affected. In fact, when either glucose or oxygen are reduced compared to standard 

bovine oocyte maturation conditions (5.6 mM glucose and 20% oxygen), oocyte competence to 

cleave and/or reach blastocyst stage is decreased (Pinyopummintr and Bavister 1995; Hashimoto 

et al. 2000a). Furthermore, when 20 mM glucose was used in an oxygen environment of 20% 

oxygen, oocyte competence was also reduced as compared to those matured in the presence of 

5.6 mM glucose and oxidative stress in the oocyte was observed (Hashimoto et al. 2000b). 

Therefore, a balance between energy substrate concentration and oxygen availability is necessary 

to allow proper oocyte maturation and embryo development, and to prevent redox imbalance 

caused by cellular starvation (low glucose or low oxygen) or increased production of ROS.  

Embryo Culture and Redox Status 

After fertilization, the putative embryo in vivo is removed from contact with the cumulus 

cells and must rely on the oviductal and uterine environment as well as in its own machinery to 

maintain energy balance and redox status compatible with survival and growth. The number of 

mitochondria in the preimplantation embryo is constant until the blastocyst stage (Jansen and de 

Boer 1998) and the existing mitochondria display a more immature phenotype which 

progressively change during early development to display an increased ratio of more mature over 

immature mitochondria at the blastocyst stage. Despite this fact, pyruvate and lactate can be 

readily used as energy sources by the bovine and murine embryos after fertilization (Leese and 

Barton 1984; Houghton et al. 1996), but not glucose, which becomes more important in 

supporting development only after compaction (Houghton et al. 1996; Gardner 1998; Khurana 
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and Niemann 2000). This is supported by findings that mitochondria are more active at early 

stages of development (<72 hours post-insemination), as demonstrated by increased 

mitochondrial membrane potential using Jc-1 dye (Tarazona et al. 2006). 

A critical factor for competence of the embryo to develop in vitro is the oxygen 

environment. In particular, the proportion of embryos developing to the blastocyst stage is 

greater when embryos are cultured under low oxygen conditions (i.e., 5% oxygen) when 

compared to counterparts cultured under atmospheric oxygen concentration (21% oxygen) 

(Thompson et al. 1990; Li and Foote 1993; Liu and Foote 1995; Dumoulin et al. 1999; Lim et al. 

1999). Furthermore, production of ROS in mouse and pig embryos is increased when culture is 

performed in 21% oxygen compared to 5% oxygen (Goto et al. 1993; Kitagawa et al. 2004). The 

reduced development of the cultured embryo under atmospheric oxygen concentration can be 

attributed at least in part to the fact that hyperoxia environment is more permissive to oxidative 

stress. Addition of molecules with antioxidant properties like β-mercaptoethanol (Takahashi et 

al. 1993; Takahashi et al. 2002), hypotaurine (Fujitani et al. 1997) and GSH precursors like 

cysteamine (Takahashi et al. 1993) to the culture medium improves development of embryos 

cultured in high oxygen.  

Involvement of ROS in Effects of Heat Shock on the Oocyte and Embryo  

Whether ROS play an important role in the effects of heat shock on oocyte maturation and 

embryonic development is controversial. In the oocyte, a role for ROS in heat shock effects was 

suggested by experiments from Lawrence et al. (2004). Addition of retinol during oocyte 

maturation decreased the negative effects of heat shock on the proportion of oocytes reaching the 

blastocyst stage. The protective effects of retinol could involve its actions as a free radical 

scavenger (Ciaccio et al. 1993), although it could also be mediated by retinol nuclear receptors 

found to be expressed (mRNA) in the bovine oocyte (Mohan et al. 2001).  



 

44 

Effects of antioxidants on embryonic responses to heat shock have been inconsistent. In 

early studies with mouse embryos, blocking GSH synthesis at the morula stage with buthionine-

sulfoximine (BSO) prevented acquisition of induced thermotolerance, which normally occurs 

when embryos are exposed to mild heat shock prior to exposure to severe heat shock (Aréchiga 

et al. 1995). In the same study, the use of and inducer of GSH synthesis, S-adenosyl-L-

methionine, decreased deleterious effects of heat shock, and supplementation with GSH 

increased embryo viability after heat shock. In contrast, GSH, glutathione ester and vitamin E 

had no thermoprotective effects on development of the bovine two-cell embryo or morula after 

heat shock (Ealy et al. 1995a; Paula-Lopes et al. 2003). At the blastocyst stage, however, GSH 

blocked the effect of heat shock on cell death (Ealy et al. 1992).   

More recent data are supportive of a role for ROS in effects of heat shock on pre-

implantation embryos. Murine female embryos were more resistant and produced less ROS after 

heat shock than male embryos (Pérez-Crespo et al. 2005). Increased resistance and lower ROS 

production after heat shock of the female embryos was suppressed by use of 

dehydroepiandrosterone, a potent inhibitor of G6PD which is an enzyme involved in antioxidant 

machinery and expressed in greater amounts in female embryos than in male embryos.  

Bovine embryos heat shocked at two different oxygen concentrations (5 and 21%) had 

decreased development compared to control non-heat shocked embryos (Rivera et al. 2004a). 

However, further interpretation of the results indicates that the reduction in development as a 

percentage of control embryos was greater in embryos heat shocked in high oxygen. Sakatani et 

al. (2004) performed a series of experiments where bovine embryos on Days 0, 2, 4 or 6 post 

insemination were exposed to heat shock at 41oC for 6 hours. Heat shock on Days 0 and 2 

decreased the competence of embryos to reach blastocyst stage and also increased production of 
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ROS. Subsequently, exposure of Day 2 embryos to heat shock at 41.5oC decreased 

developmental competence and reduced GSH content (Sakatani et al. 2007). These effects were 

blocked or reduced by addition of an antioxidant extracted from purple sweet potato (Ipomea 

batatas), anthocyanin. Anthocyanin is a strong ROS-scavenger and therefore believed to exert its 

effects by reacting directly with ROS (Oki et al. 2002; Oki et al. 2003) and preserving 

endogenous GSH. Preserving GSH content may be particularly important at the 2-8 cell stages of 

embryo development, when GSH content is lower compared to later stages and synthesis of new 

GSH molecules is reduced (Lim et al. 1996b).  

Heat Stress, Blood Flow and Hypoxia 

While excessive oxygen has been shown to compromise cell function due to oxidative 

stress, reduction in oxygen levels lower than physiological range can also cause deleterious 

effects. In reproduction, poor blood flow and oxygenation of the follicle in humans has been 

correlated with decreased oocyte quality (Van Blerkom et al. 1997; Van Blerkom 1998). 

Chromosomal scattering was observed in oocytes from follicles that had oxygen content of less 

than 1% (Van Blerkom et al. 1997). Oocytes derived from follicles containing ≤1.5% oxygen 

had almost half the capacity of reaching 6-8 cell stage when compared to oocytes from follicles 

with 3-5% oxygen. Treatment of infertility of human patients with hyperbaric oxygen prior to 

oocyte collection resulted in more transferable embryos per patient after in vitro fertilization 

(Van Voorhis et al. 2005).  

One of the physiological responses to increased body temperature is the redistribution of 

blood circulation to extremities (Choshniak et al. 1982) by vasodilatation of capillaries in skin to 

help dissipate heat by convection (Kenney and Musch 2004), which in Holstein cows has been 

estimated to account for approximately 85% of the total heat loss when ambient temperatures 

rise above 30oC (Maia et al. 2005b). Another physiological change involved in thermoregulation 
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is the increase in the frequency of respiratory cycles (Berman et al. 1985; Srikandakumar and 

Johnson 2004; Valtorta and Gallardo 2004; Maia et al. 2005a). This increase in frequency 

demands high blood flow in the muscles involved in respiratory activity and also in the upper 

respiratory tract to allow better blood oxygenation and efficient heat loss (Wolfenson et al. 1981; 

Bell et al. 1983).  

Redistribution of blood flow can greatly affect the reproductive tract. In rabbits, blood flow 

to ovaries, cervix and oviduct decreased by 20 to 30% during heat stress while vulval blood flow 

increased 40% (Lublin and Wolfenson 1996). Elevation in body temperature of the laying hen by 

1 to 2oC caused capillary blood flow to decrease by 58% and 70 to 80% of control animals in the 

uterus and large ovarian follicles, respectively (Wolfenson et al. 1981). In two separate 

experiments, ovariectomized cows and ewes kept under no-shade during summer in Florida and 

injected with estradiol had 15% less increase in uterine blood flow when compared to the 

animals kept under shade (Roman-Ponce et al. 1978b; Roman-Ponce et al. 1978a).  

Objective and Hypothesis 

Several factors participate in the complex, developmentally-regulated embryonic response 

to heat shock. Experiments described in the present dissertation have the overall objective of 

determining potential factors contributing to the phenomenon described in the literature of 

decreased oocyte and embryo competence to reach the blastocyst stage and increased incidence 

of apoptosis caused by heat shock. Focus was giving to the role of oxygen and oxidative stress as 

a modulator of the effects of heat shock in the oocyte and embryo. The presence of a ceramide 

signaling mechanism linked to apoptotic pathways, which in other cells have been shown to be 

activated by heat shock, was also studied. The following four chapters contain a series of 

experiments with specific objectives and hypotheses, each contributing to the overall objective. 
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The specific objective in Chapter 3 was to test the hypothesis that effects of heat shock on 

development and apoptosis in the preimplantation embryo are dependent on oxygen environment 

and ROS. To test this hypothesis, embryos were exposed to heat shock under 5 or 21% oxygen 

atmosphere, with the latter expected to cause more severe effects to the embryo due to oxidative 

stress. To further address the importance of oxidative stress in effects of heat shock in embryo 

development and apoptosis, experiments were performed to test if effects of heat shock could be 

attenuated by use of the antioxidant DTT.  

Because the initial steps of the apoptotic response to heat shock have been shown to 

depend upon ceramide generation, the objective in Chapter 4 was to test the hypothesis that 

ceramide signaling pathway is present in the bovine preimplantation embryo. This hypothesis 

was tested by evaluating actions of ceramide and its inactive analogue dihydroceramide on 

activation of apoptosis. Experiments were also performed to determine the activity of neutral and 

acid SMases in response to heat shock.  

The attention in Chapter 5 was on the role of oxygen concentration on effects of heat shock 

in the oocyte. The hypothesis was tested that heat shock effects are more severe in oocytes 

matured at 21% oxygen than in those matured at 5% oxygen.  

The objective for Chapter 6 was to test the hypothesis that heat stress in lactating dairy 

cows reduces oxygen concentration in follicular fluid of dominant pre-ovulatory follicles. The 

rationale is that animals under heat stress have decreased blood flow to internal organs, including 

the reproductive tract, and this could be an indirect effect of heat stress in fertility observed 

during the hot months of the year. For this experiment follicular fluid from heat-stressed cows 

was aspirated and concentrations of oxygen, estradiol and progesterone were determined.  
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CHAPTER 3 
ROLE OF OXYGEN AND OXIDATIVE STRESS IN ACTIONS OF HEAT SHOCK ON 
DEVELOPMENT AND APOPTOSIS OF PREIMPLANTATION BOVINE EMBRYOS  

Introduction 

Exposure to elevated temperature reduces developmental competence of preimplantation 

embryos. This phenomenon has been shown in several species including mice (Aréchiga et al. 

1995; Aréchiga and Hansen 1998; Ozawa et al. 2002), rabbits (Makarevich et al. 2006), and 

cattle (Edwards and Hansen 1997; Krininger et al. 2002; Paula-Lopes et al. 2003; Sakatani et al. 

2004). The mechanism by which heat shock inhibits embryonic development is not completely 

understood. In the cow, exposure of two-cell embryos to elevated temperature causes a slight 

increase in the number of swollen mitochondria and changes in the cytoskeleton that lead to 

displacement of organelles away from the plasma membrane (Rivera et al. 2003; Rivera et al. 

2004c). At later stages of development (after the 8-16 cell stage), apoptosis can be induced by 

heat shock but this phenomenon does not occur for earlier embryos (Paula-Lopes and Hansen 

2002b). 

Increased production of ROS may be one mechanism by which heat shock disrupts 

development of preimplantation embryos. Whether this is really the case is not clear from the 

literature and may depend on stage of development and degree of heat shock. In the mouse, 

effects of a heat shock of 42oC for 2 hours on development were reported to be decreased by 

GSH (Aréchiga et al. 1995). Moreover, the phenomenon of induced thermotolerance, whereby 

exposure to a mild heat shock makes cells more resistant to a subsequent, severe heat shock, was 

dependent upon GSH synthesis in the mouse morula (Aréchiga et al. 1995). However, inhibition 

of GSH synthesis did not alter effects of 41oC for 1 hour on development of two-cell embryos or 

morulae (Aréchiga and Hansen 1998). Data are inconsistent as to whether heat shock increases 

production of ROS. One report indicates that exposure of mouse morulae to 41oC for 1 hour 
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tended to reduce intracellular GSH content (Aréchiga et al. 1995). In contrast, heat shock had no 

direct effect on redox state of mouse zygotes, as assessed by embryonic content of GSH and 

hydrogen peroxide (Ozawa et al. 2002).  

In cattle, there was no thermoprotective effect of the antioxidants GSH, glutathione ester or 

vitamin E on development (Ealy et al. 1995b; Paula-Lopes et al. 2003) but administration of 

anthocyanins, a class of antioxidant from purple sweet potato, reduced effects of heat shock at 

Day 2 after insemination on development to the blastocyst stage (Sakatani et al. 2007). Likewise, 

GSH was effective at reducing deleterious effects of heat shock in embryos at the morula stage 

(Ealy et al. 1992). There are also reports that exposure of embryos at Day 0 and 2, relative to 

insemination, to 41oC or 41.5oC for 6 hours increased ROS production as determined by 

oxidation of 2',7'-dichlorodihydrofluorescein diacetate (Sakatani et al. 2004). Heat shock did not 

increase oxidation of 2',7'-dichlorodihydrofluorescein diacetate later in development at Days 4 or 

6 after insemination (Sakatani et al. 2004). Exposure of Day 2 embryos to 41.5oC for 6 hours 

also reduced GSH content (Sakatani et al. 2007) although a less severe heat (41oC for 6 hours) 

did not reduce intracellular GSH content of two-cell embryos (Rivera et al. 2004b). 

One potential approach to test the importance of ROS for mediating effects of heat shock is 

to modify the free radical status of embryos by manipulating the oxygen content of the 

atmosphere used for culture. Elevated oxygen concentration has been shown to increase 

hydrogen peroxide production in somatic cell culture systems (Kwak et al. 2006) as well as in 

culture of preimplantation embryos (Goto et al. 1993; Kitagawa et al. 2004). Under 

normothermia (38-39oC), the proportion of embryos successfully developing in culture is 

increased when bovine embryos are cultured in a gas environment of 5% (v/v) oxygen as 

compared to culture in air (Thompson et al. 1990; Lim et al. 1999). This difference in 
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development is due in large part to ROS because addition of antioxidants and pro-antioxidants to 

culture medium of embryos cultured in air improves embryonic development and reduces the 

proportion of blastomeres exhibiting apoptosis (Takahashi et al. 1993; Takahashi et al. 2002).  

In the present study, the role of oxidative stress in mediating deleterious effects of heat 

shock on the bovine preimplantation embryo was assessed. First, experiments were carried out to 

determine if effects of heat shock were reduced in a low oxygen environment as compared to a 

high oxygen environment (5% vs ~21%). Secondly, experiments were performed to determine if 

effects of heat shock to reduce development and induce apoptosis can be prevented by the 

antioxidant DTT.  

Materials and Methods 

Materials 

The media HEPES-Tyrodes Lactate (TL), IVF-TL, and Sperm-TL were purchased from 

Cell and Molecular Technologies Inc. (Lavallete, NJ) and used to prepare HEPES-Tyrodes 

albumin lactate pyruvate (TALP), IVF-TALP, and Sperm-TALP as previously described  

(Parrish et al. 1986). Oocyte collection medium (OCM) was Tissue Culture Medium-199 (TCM-

199) with Hank’s salts without phenol red (Atlanta Biologicals, Norcross, GA) supplemented 

with 2% (v/v) bovine steer serum containing 2 U/ml heparin (Pel-Freez, Rogers, AR), 100 U/ml 

penicillin-G, 0.1 mg/ml streptomycin, and 1 mM glutamine. Oocyte maturation medium (OMM) 

was TCM-199 (BioWhittaker, Walkersville, MD) with Earle’s salts supplemented with 10% 

(v/v) bovine steer serum, 2 µg/ml estradiol 17-ß, 20 µg/ml bovine follicle stimulating hormone 

(Folltropin-V; Vetrepharm Canada, London, ON), 22 µg/ml sodium pyruvate, 50 µg/ml 

gentamicin sulfate, and 1 mM glutamine. Percoll was from GE Biosciences (Uppsala, Sweden). 

Frozen semen from various bulls of different breeds was donated by Southeastern Semen 

Services (Wellborn, FL). Potassium simplex optimized medium (KSOM) that contained 1 mg/ml 
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bovine serum albumin (BSA) was obtained from Cell and Molecular Technologies (Lavallete, 

NJ) or Caisson Laboratories (Rexburgh, ID). Essentially fatty-acid free (EFAF) BSA was from 

Sigma (St. Louis, MO). On the day of use, KSOM was modified for bovine embryos to produce 

KSOM-BE2 as described elsewhere (Soto et al. 2003c). 

The In Situ Cell Death Detection Kit (fluorescein or TMR red) was obtained from Roche 

Diagnostics Corporation (Indianapolis, IN). Hoechst 33342 was purchased from Sigma. 

Polyvinylpyrrolidone (PVP) was purchased from Eastman Kodak (Rochester, NY) and RQ1 

RNase-free DNase was from Promega (Madison, WI). All other reagents were purchased from 

Sigma or Fisher Scientific (Pittsburgh, PA).  

In Vitro Production of Embryos 

Embryo production was performed as previously described (Jousan and Hansen 2004). 

Briefly, COCs were obtained by slicing 2- to 10-mm follicles on the surface of ovaries (a mixture 

of beef and dairy cattle) obtained from Central Beef Packing Co. (Center Hill, FL). Those COCs 

with at least one complete layer of compact cumulus cells were washed two times in OCM and 

used for subsequent steps. Groups of 10 COCs were placed in 50-µl drops of OMM overlaid with 

mineral oil and matured for 20–22 hours at 38.5°C in an atmosphere of 5% (v/v) CO2 in 

humidified air. Matured COCs were then washed once in HEPES-TALP and transferred in 

groups of 30 to 4-well plates containing 1 x 106 Percoll-purified spermatozoa from a pool of 

frozen-thawed semen from three bulls in 600 µl of IVF-TALP and 25 µl per well of a solution of 

PHE [0.5 mM penicillamine, 0.25 mM hypotaurine, and 25 µM epinephrine in 0.9% (w/v) 

NaCl].  A different pool of three bulls was generally used for each replicate. After 10-12 hours at 

38.5°C in an atmosphere of 5% CO2 in humidified air, putative zygotes were removed from 

fertilization wells, denuded of cumulus cells by vortex mixing in 1 ml of 1000 U/ml 

hyaluronidase in HEPES-TALP, and placed in groups of 30 in 50-µl drops of KSOM-BE2. All 
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drops of embryos were overlaid with mineral oil and cultured as described for individual 

experiments. The CO2 environment of culture was maintained at 5% (v/v) for culture at 38.5oC 

and was raised to 6% for cultures at 41oC to correct for reduced solubility of CO2 and to maintain 

the pH of the medium at 41oC to a value similar to that for cultures at 38.5oC (pH~7.4) (Rivera 

and Hansen 2001). A number of ~10-20 embryos were put in each drop in any given replicate of 

each experiment  

TUNEL and Hoescht 33342 Labeling 

The TUNEL assay was used to detect DNA fragmentation associated with late stages of the 

apoptotic cascade. The enzyme terminal deoxynucleotidyl transferase is a DNA polymerase that 

catalyzes the transfer of a fluorescein isothiocyanate- or TMR red- conjugated dUTP nucleotide 

to a free 3' hydroxyl group characteristic of DNA strand breaks. Embryos were removed from 

KSOM-BE2 and washed two times in 50-µl drops of 10 mM KPO4, pH 7.4 containing 0.9% 

(w/v) NaCl (PBS) and 1 mg/ml polyvinylpirrolidone (PBS-PVP) by transferring the embryos 

from drop to drop. Embryos were fixed in a 50-µl drop of 4% (w/v) paraformaldehyde in PBS for 

25 minutes at room temperature, washed twice in PBS-PVP, and stored in 600 µl of PBS-PVP at 

4°C until the time of assay. All steps of the TUNEL assay were conducted using microdrops in a 

humidified box.  

On the day of the TUNEL assay, embryos were transferred to a 50-µl drop of PBS-PVP 

and then permeabilized in 0.1% (v/v) Triton X-100 containing 0.1% (w/v) sodium citrate for 10 

minutes at room temperature. Controls for the TUNEL assay were incubated in 50 µl of RQ1 

RNase-free DNase (50 U/ml) at 37°C in the dark for 1 hour. Positive controls and treated 

embryos were washed in PBS-PVP and incubated with 25 µl of TUNEL reaction mixture 

(containing fluorescein isothiocyanate- or TMR red- conjugated dUTP and the enzyme terminal 

deoxynucleotidyl transferase as prepared by following the guidelines of the manufacturer) for 45 
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minutes at 37°C in the dark. Negative controls were incubated in the absence of terminal 

deoxynucleotidyl transferase. Embryos were then washed three times in PBS-PVP and incubated 

in a 25-µl drop of Hoechst 33342 (1 µg/ml) for 15 minutes in the dark. Embryos were washed 

three times in PBS-PVP to remove excess Hoechst 33342, mounted on 10% (w/v) poly-L-lysine 

coated slides using 4-µl drops of antifade, and coverslips were placed on the slides. Labeling of 

TUNEL and Hoechst 33342 nuclei was observed using a Zeiss Axioplan 2 epifluorescence 

microscope (Zeiss, Göttingen, Germany). Each embryo was analyzed for total cell number (blue 

nuclei) and TUNEL-positive blastomeres (green or red nuclei) with DAPI and FITC or rodamine 

filters, respectively, using a 20X objective. Digital images were acquired using AxioVision 

software and a high-resolution black and white Zeiss AxioCam MRm digital camera.  

Experiments on Modification of Heat Shock Effects by Oxygen Environment  

Effect of heat shock at the two-cell stage on development to the blastocyst stage as modified 
by oxygen environment throughout culture.  

After insemination, putative embryos were randomly assigned to be cultured in either high 

(5% CO2 in humidified air) or low oxygen (5% O2, 5% CO2 and N2 in a humidified chamber). 

Two-cell embryos were harvested at 28 hours after insemination and randomly assigned to 

culture at 38.5oC or 41oC for 9 hours under high or low oxygen in a 2 x 2 factorial design. After 

the heat shock period, all embryos were further cultured at 38.5oC in either high or low oxygen 

until Day 8 when the percentage of embryos becoming blastocysts was determined. Embryos 

were maintained in the same oxygen environment throughout culture. Thus embryos placed in 

low oxygen after insemination remained in low oxygen during the heat shock period and in the 

post-heat shock period. The experiment was replicated 3 times with a total of 220 embryos. 
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Acute effect of oxygen environment on development of heat shocked two-cell embryos. 

After insemination, putative embryos were cultured in high oxygen. Two-cell embryos 

were harvested at ~ 28 hours after insemination and randomly assigned to be cultured at either 

38.5oC for 24 hours or 41oC for 9 hours followed by 38.5oC for 15 hours in either high or low 

oxygen. Thereafter, all embryos were cultured at 38.5oC in high oxygen until Day 8 when the 

percentage of embryos becoming blastocysts was determined. The experiment was replicated 9 

times using a total of 672 two-cell embryos.  

Acute effect of oxygen environment on development of heat shocked Day 5 embryos > 16 
cells.  

Putative embryos were cultured in high oxygen after insemination. Embryos ≥ 16-cells 

were harvested on Day 5 after insemination and were randomly assigned to be cultured at either 

38.5oC for 24 hours or 41oC for 9 hours followed by 38.5oC for 15 hours in either high or low 

oxygen using a 2 x 2 factorial arrangement of treatments. Thereafter, embryos were cultured at 

38.5oC in high oxygen until Day 8 when the percentage of embryos becoming blastocysts was 

determined. The experiment was replicated 7 times using a total of 447 embryos. 

Heat shock effects on apoptosis of Day 5 embryos > 16 cells as modified by oxygen 
environment throughout culture.  

Putative embryos were randomly assigned to be cultured in either high or low oxygen 

beginning after insemination. On Day 5, embryos ≥16 cells were harvested and placed in new 

drops and cultured at 38.5oC for 24 hours or 41oC for 9 hours followed by 38.5oC for 15 hours.  

During this period, embryos were cultured in the same oxygen environment that they were 

exposed to earlier. Thus, the design was a 2 x 2 factorial design with two temperatures and two 

oxygen environments. All embryos were fixed 24 hours after initiation of the heat shock period, 

on Day 6 after insemination, and stored in PBS-PVP at 4°C until analysis by TUNEL and 

Hoechst 33342 labeling. The experiment was replicated 5 times with a total of 217 embryos. 
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Effects of heat shock in low oxygen on apoptosis of Day 4 and Day 5 embryos > 16 cells. 

Putative embryos were cultured in low oxygen after insemination. Embryos ≥ 16 cells were 

harvested at either Day 4 or Day 5 after insemination. Separate drops of embryos were used for 

selection on each day. Harvested embryos were placed in fresh drops of culture medium and 

randomly assigned to be cultured in low oxygen at 38.5oC for 24 hours or 41oC for 9 hours 

followed by 15 hours at 38.5oC. Embryos were harvested at the end of culture and stored in PBS-

PVP at 4°C until analysis by TUNEL and Hoechst 33342 labeling. The experiment was 

replicated 3 times using a total of 239 embryos. 

Experiments on Thermoprotective Actions of DTT 

Protective action of DTT on development of embryos heat shocked at the two-cell stage and 
cultured in high oxygen continuously.  

After insemination, putative embryos were cultured in high oxygen. Two-cell embryos 

were harvested at ~28 hours post insemination and randomly assigned to be cultured in the 

presence of 0, 50 or 500 µM at 38.5oC for 24 hours or 41oC for 15 hours followed by 38.5oC for 

9 hours using a 3 x 2 factorial arrangement of treatments. Afterwards, embryos were washed 3 

times in 100 µl drops of HEPES-TALP and cultured in fresh drops of KSOM-BE2 at 38.5oC in 

high oxygen. Blastocyst development was determined at Day 8. The experiment was replicated 6 

times using a total of 431 embryos. 

Protective action of DTT on development of embryos heat shocked at the two-cell stage in 
different oxygen environments and otherwise cultured in low oxygen. 

After insemination, putative embryos were cultured in low oxygen. Two-cell embryos 

were harvested at ~28 hours after insemination and randomly assigned to one of eight treatments 

in a 2 x 2 x 2 factorial design with main effects of incubation temperature (38.5oC for 24 hours or 

41oC for 15 hours followed by 38.5oC for 9 hours), oxygen environment (high or low oxygen) 

and DTT (0 or 500 µM). After 24 hours, embryos were washed 3 times in 100 µl HEPES-TALP 
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drops and placed in fresh drops of KSOM-BE2 and cultured in low oxygen at 38.5oC until Day 8 

when blastocyst development was determined. The experiment was replicated 16 times using a 

total of 1264 two-cell embryos.  

For 5 of the above-mentioned 16 replicates, additional treatments were included that were 

analyzed as a separate data set. These embryos were in high oxygen for the entire culture period. 

Two-cell embryos were harvested and randomly assigned to one of four treatments in a 2 x 2 

factorial design with main effects of incubation temperature (38.5oC for 24 hours or 41oC for 15 

hours followed by 38.5oC for 9 hours) and DTT (0 or 500 µM). A total of 184 two-cell embryos 

were used. After 24 hours, embryos were washed 3 times in 100 µl HEPES-TALP drops and 

placed in fresh drops of KSOM-BE2 and cultured in high oxygen at 38.5oC until Day 8 when 

blastocyst development was determined.  

Protective action of DTT on development of heat-shocked embryos > 16 cells cultured in 
high oxygen continuously. 

Putative embryos were cultured in high oxygen after insemination. On Day 5, embryos ≥16 

cells were harvested and randomly assigned to one of six treatments in a 2 x 3 factorial design 

with main effects of incubation temperature (38.5oC for 24 hours or 41oC for 15 hours followed 

by 38.5oC for 9 hours) and DTT (0, 50 or 500 µM). All embryos were cultured in high oxygen. 

Afterwards, embryos were washed 3 times in 100 µl HEPES-TALP and cultured in fresh 

KSOM-BE2 at 38.5oC in high oxygen until Day 8 when blastocyst development was determined. 

The experiment was replicated 10 times using a total of 545 embryos.  

Protective action of DTT on apoptosis of heat-shocked embryos > 16 cells cultured in high 
oxygen continuously.   

Putative embryos were cultured in high oxygen after insemination. On Day 5, embryos ≥16 

cells were harvested and randomly assigned to culture in the presence of 0, 50 or 500 µM DTT at 

38.5oC for 24 hours or 41oC for 15 hours followed by 38.5oC for 9 hours. Afterwards, were fixed 
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in paraformaldehyde for TUNEL assay. The experiment was replicated 4 times using a total of 

287 embryos. 

Statistical Analysis 

Data on percent of embryos becoming blastocysts were calculated for each replicate and 

analyzed by least-squares analysis of variance using the General Linear Models (GLM) 

procedure of SAS (SAS for Windows, Version 8, 1999–2001, Cary, NC). Replicate was 

considered random and other main effects were considered fixed. Effects of specific doses of 

DTT in protecting embryos from heat shock were calculated using contrasts. When necessary to 

determine the effects of one main effect within one factor of a second main effect, the first main 

effect was fixed using the Sort procedure from SAS. For example, to determine if there was an 

effect of 500 µM DTT at 41oC, the main effect of temperature was fixed using the Sort 

procedure and effects of each DTT concentration was determined separately for embryos at 38.5 

and 41oC.  

In some experiments, the percent reduction in blastocyst development induced by heat 

shock was calculated for each replicate according to the equation: 100 – [(percent development 

at 41°C/percent development at 38.5°C) x 100]. For apoptosis, the percent of blastomeres that 

were TUNEL-positive (i.e. assumed apoptotic) were determined for each embryo. Total cell 

number for each embryo was also analyzed. For all of these variables, data were analyzed by 

least-squares analysis of variance as described above.  

All values reported are least-squares means ± SEM. 
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Results 

Effect of Heat Shock at the Two-Cell Stage on Development as Modified by Oxygen 
Environment 

In the first experiment, embryos cultured continuously in either high or low oxygen were 

heat-shocked by exposure to 41oC for 9 hours at the two-cell stage. As shown in Figure 3-1, a 

smaller proportion of two-cell embryos developed to the blastocyst stage at Day 8 after 

insemination when cultured in high oxygen than when cultured in low oxygen (P < 0.05) Heat 

shock decreased development of two-cell embryos to the blastocyst stage in high oxygen but not 

in low oxygen (temperature x oxygen, P < 0.05). 

In the second experiment, embryos were cultured in high oxygen throughout culture except 

for the 24-hour period coincident with heat shock. During this time, embryos were cultured in 

either high or low oxygen and at either 38.5oC for 24 hours or 41oC for 9 hours followed by 

38.5oC for 15 hours. Data on the proportion of embryos that became blastocysts at Day 8 after 

insemination are presented in Figure 3-2. The percentage of embryos becoming blastocysts did 

not differ between high and low oxygen at 38.5oC. Heat shock decreased the proportion of two-

cell embryos becoming blastocysts in high oxygen but not in low oxygen (temperature x oxygen, 

P < 0.05). 

Effect of Heat Shock on Development of Day 5 Embryos > 16 Cells as Modified by Oxygen 
Environment 

Embryos were cultured in high oxygen until Day 5 when those ≥ 16-cells were harvested 

and cultured at either 38.5oC for 24 hours or 41oC for 9 hours and 38.5oC for 15 hours in high or 

low oxygen. Thereafter, all embryos were cultured in high oxygen and blastocyst development 

was determined on Day 8. Results are shown in Figure 3-3. The percentage of embryos 

becoming blastocysts did not differ between high and low oxygen at 38.5oC. Heat shock 
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decreased development of embryos to the blastocyst stage when culture was in high oxygen but 

not when culture was in low oxygen (temperature x oxygen, P < 0.05)  

Induction of Apoptosis by Heat Shock in Day 4 and 5 Embryos ≥ 16 Cells as Modified by 
Oxygen Environment 

Two experiments were conducted to test whether oxygen environment altered the 

induction of apoptosis in Day 4 and 5 embryos. In the first study, embryos were cultured 

continuously in either high or low oxygen. At Day 5, embryos ≥16 cells were cultured at 38.5oC 

for 24 hours or 41oC for 9 hours followed by 38.5oC. As shown in Figure 3-4A, total cell number 

at the end of culture was lower for embryos cultured in high oxygen compared to embryos 

cultured in low oxygen (P < 0.05). Neither temperature nor temperature x oxygen affected total 

cell number (P > 0.1). Results for percent of cells undergoing apoptosis as determined by 

TUNEL labeling is presented in Figure 3-4B. The proportion of cells that were TUNEL-positive 

was higher for embryos cultured at 41oC than for embryos at 38.5oC if culture was in high 

oxygen but not if culture was in low oxygen (temperature x oxygen; P < 0.05).  

In the second experiment, embryos > 16 cells cultured in low oxygen were harvested at 

either Day 4 or 5 after insemination. Thereafter, embryos continued to be cultured in low 

oxygen. Embryos were cultured at 38.5oC for 24 hours or 41oC for 9 hours followed by 38.5oC 

for 15 hours. Embryos were then fixed and stained for TUNEL and Hoechst 33342. Heat shock 

increased apoptosis for embryos collected at both Days 4 and 5 (Figure 3-5; temperature, P < 

0.05). This increase, although significant, was much lower than the increase observed in the 

previous experiment (compare Figures 3-4 and 3-5). As expected, Day 4 embryos had fewer cells 

than Day 5 embryos (P < 0.05) but heat shock had no effect on total cell number at either Day 4 

or Day 5 (P > 0.1). 
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Protective Actions of DTT on Development of Heat-Shocked Two-Cell Embryos  

Two experiments were performed to determine whether DTT blocked deleterious effects of 

heat shock on development of two-cell embryos. In the first experiment, embryos were cultured 

continuously in high oxygen. At the two-cell stage, embryos were cultured in the presence of 0, 

50 or 500 µM DTT at either 38.5oC for 24 hours or at 41oC for 15 hours followed by 38.5oC for 

9 hours. After the heat shock period, all embryos were further cultured at 38.5oC in fresh 

medium without DTT until Day 8 after insemination. The overall percentage of two-cell embryos 

becoming blastocysts was higher for embryos cultured in the presence of DTT (P < 0.05; Figure 

3-6A). Heat shock reduced development of two-cell embryos to the blastocyst stage in the 

presence or absence of DTT (temperature; P < 0.05). While there was no significant DTT x 

temperature interaction (Figure 3-6A), the reduction in development caused by heat shock, 

expressed as a percentage of development for non-heat shocked embryos, was less for embryos 

cultured in the presence of DTT (P < 0.05; Figure.3-6B). Nonetheless, even at the highest dose of 

DTT, development was reduced 78.9% by culture at 41oC.  

In the second experiment, two-cell embryos cultured in low oxygen were harvested and 

then cultured at either high or low oxygen in the presence or absence of 500 µM DTT and at 

either 38.5oC for 24 hours or 41oC for 15 hours followed by 38.5oC for 9 hours. Embryos were 

then washed and cultured in low oxygen at 38.5oC without DTT until Day 8 after insemination 

when blastocyst development was determined. As shown in Figure 3-7A, the proportion of two-

cell embryos that became blastocysts was affected by the temperature x oxygen x DTT 

interaction (P < 0.05). This interaction existed because temperature reduced development in all 

groups except for the embryos cultured in low oxygen in the absence of DTT. Thus, unlike the 

previous experiment, DTT did not reduce effects of heat shock on development in high oxygen 

and, in fact, exacerbated the effects of heat shock in low oxygen. 
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To verify that the difference in response to DTT depended upon whether embryos were 

cultured in high oxygen (Figure 3-6) or cultured in low oxygen for most of development (Figure 

3-7A), additional treatments were included in the second DTT experiment for some replicates. In 

particular, some embryos were cultured continuously in high oxygen but otherwise treated as for 

Figure 3-7A. In this subset, DTT conferred partial protection against heat shock (DTT x 

temperature, P < 0.05). The percent reduction in blastocyst development by heat shock tended (P 

= 0.08) to be lower for DTT-treated embryos (77.3 ± 6.5%) than for control embryos (95.5 ± 

6.5%). The absolute magnitude of the reduction in development caused by heat shock was 

similar to the previous experiment conducted in high oxygen (Figure 3-6B). 

Protective Actions of DTT on Development of Heat-Shocked Day 5 Embryos > 16 Cells  

This experiment was performed with embryos cultured continuously in high oxygen. On 

Day 5, embryos ≥16 cells were cultured in the presence of 0, 50 or 500 µM DTT at 38.5oC for 24 

hours or 41oC for 15 hours and 38.5oC for 9 hours. Afterwards, all embryos were cultured at 

38.5oC without DTT until Day 8 after insemination. As shown in Figure 3-8A, the percent of 

embryos becoming blastocysts was reduced by heat shock (P < 0.01) and increased by DTT (P < 

0.01) and there was no significant temperature x DTT interaction. However, as shown in Figure 

3-8B, the reduction in development caused by heat shock, expressed as a percentage of 

development for non-heat shocked embryos, was less for embryos cultured in the presence of 50 

µM (P = 0.06) and 500 µM DTT (P < 0.01) than for embryos cultured without DTT.  

Protective Actions of DTT on Apoptosis of Heat-Shocked Day 5 Embryos > 16 Cells  

This experiment was done as for the previous experiment except that embryos were 

analyzed for apoptosis 24 hours after initiation of heat shock using the TUNEL assay. There was 

no effect of temperature or DTT on total cell number (Figure 3-9A; temperature, P > 0.1). 

Overall, the proportion of cells that were apoptotic was affected by DTT (Figure 3-9B; P <0.01). 
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Among embryos cultured at 38.5oC as well as for embryos at 41oC, DTT 500 µM decreased the 

percent of TUNEL positive nuclei (DTT, P < 0.01). Although there was no overall effect of 

temperature in the percent of TUNEL positive nuclei, heat shock increased the percent of 

TUNEL positive nuclei among embryos treated with 0 µM DTT (temperature, P < 0.01) but not 

for embryos treated with DTT (temperature, P > 0.1).  

Discussion  

The role of ROS in mediating effects of elevated temperature on function of the 

preimplantation embryo has been a controversial topic. As outlined in the Introduction, 

experiments have yielded inconsistent results as to whether heat shock increases production of 

ROS and whether antioxidants can protect embryos from deleterious effects of heat shock. In the 

present studies, use of the high oxygen vs. low oxygen model yielded clear evidence that oxygen 

environment is an important determinant of continued embryonic development following heat 

shock. Experiments using DTT have revealed that some of the actions of heat shock on 

development involve ROS production in a stage-specific manner and that ROS-independent 

actions of heat shock are also likely. Experiments also demonstrated that ROS are important 

triggers for induction of the apoptotic cascade during heat shock because heat-shock induced 

apoptosis was blocked or greatly reduced by culture in low oxygen and blocked by addition of 

DTT to culture medium.  

In each of four experiments, deleterious effects of heat shock on continued development of 

embryos was only observed when embryos were in a high oxygen environment during heat 

shock. This was true for both two-cell embryos and Day 5 embryos > 16 cells and was true 

whether embryos were cultured continuously in different oxygen environments or whether 

oxygen environment differed during the 24 hours after initiation of heat shock only. There are 

three possible explanations for this finding. One is that effects of heat shock on embryonic 
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development are mediated by increased ROS production and that the magnitude of this increase 

is greater when embryos are cultured in high oxygen. Indeed, embryos cultured in a high oxygen 

environment have greater production of ROS (Goto et al. 1993; Kitagawa et al. 2004). 

Alternatively, the deleterious effect of heat shock may not be a direct result of increased 

production of ROS but rather heat shock is more likely to inhibit development of embryos when 

their physiology is already compromised by the increased ROS production caused by culture in 

high oxygen. A third possibility is that high oxygen does not increase susceptibility to heat shock 

but that culture in low oxygen results in changes in cellular function that increase embryonic 

resistance to heat shock. This latter explanation is deemed less likely. There are genes in the 

bovine blastocyst whose expression is dependent upon oxygen concentration but the full range of 

oxygen-induced transcription is attenuated by the lack of hypoxia-inducible transcription factor-1 

(Harvey et al. 2004b; Harvey et al. 2007a; Harvey et al. 2007b). Also, effects of oxygen were 

seen at the two-cell stage, a time before embryonic genome activation has occurred (Memili and 

First 2000). 

If the effects of oxygen environment on embryonic development reflect altered ROS 

production, antioxidants should reduce effects of heat shock on development. DTT was used as 

an antioxidant in the present study because it is a strong reducing agent that contains two thiol 

groups for sequential thiol-disulfide exchange reactions for direct scavenging of ROS as well as 

regeneration of reduced GSH from GSSG (Rothwarf and Scheraga 1992). Treatment of mouse 

embryos with DTT blocked effects of the thiol-oxidizing agent diamide (Liu et al. 1999). In the 

absence of heat shock, DTT increased the proportion of two-cell embryos and Day 5 embryos > 

16 cells, maintained continuously in high oxygen, that became blastocysts. Such a result supports 

the previously-demonstrated idea that the deleterious effects of culture in high oxygen on 
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blastocyst development involve ROS (Fujitani et al. 1997; Takahashi et al. 2002). Moreover, 

these results demonstrate that DTT was added at concentrations sufficient to affect embryo 

physiology. At both stages of development tested, there was a thermoprotective effect of DTT 

measured as a reduction in the block to development caused by culture at 41oC that was either 

significant or tended to be significant. The thermoprotective effect of DTT was incomplete, 

however, and depended upon stage of development. For the two-cell embryo exposed 

continuously to high oxygen, the degree of inhibition of blastocyst development caused by heat 

shock in the presence of the highest concentration of DTT tested (500 µM) was 77.3-78.9% 

compared to 95.5-100 % in the absence of DTT (Figures.3-6 and 3-7B) . When two-cell embryos 

were cultured in low oxygen except during heat shock, there was no protective effect of DTT 

(Figure 3-7). For the Day 5 embryo > 16 cells, in contrast, the degree of inhibition of 

development caused by heat shock in the presence of 500 µM DTT was 26.6% compared to 

70.8% of that in the absence of DTT (Figure 3-8B).  

The differential effect of DTT on two-cell embryos versus embryos at Day 5 could reflect 

several differences in cell physiology. The two-cell embryo is more susceptible to heat shock 

than the Day 5 embryo and the reduced effectiveness of DTT at the two-cell stage may reflect 

the increased heat susceptibility of the two-cell embryo. In another experiment in which heat 

shock was of reduced duration (41.5oC for 6 hours) compared to the study here, anthocyanins 

from purple sweet potato completely blocked actions of heat shock on continued development of 

embryos at Day 2 after fertilization (Sakatani et al. 2007). Another possible explanation for the 

minimal effect of DTT at the two-cell stage relates to GSH status of the embryo. Glutathione 

content is higher for embryos at Day 5 than at the two-cell stage (Lim et al. 1996a) and DTT 
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might be more effective at altering redox status later in development as a result. Effectiveness of 

DTT as an antioxidant is reduced in cells depleted of GSH (Zou et al. 2001).    

Indeed a deficiency in GSH could be one reason why DTT did not completely reverse 

effects of heat shock on development. It could be postulated that DTT, which is water soluble, 

did not prevent oxidative damage in the lipid compartment of the cell. However, DTT can block 

lipid peroxidation in several models of oxidation [(see for example (Fariss et al. 1997; Zou et al. 

2001)] and GSH, which is regenerated by DTT, plays an important role in preventing lipid 

peroxidation (Blair 2006). Another interpretation for the failure of DTT to completely block 

effects of heat shock is that there are effects of heat shock that are independent of ROS 

production. Among the possible ROS-independent effects of heat shock are protein denaturation 

and increased membrane fluidity.  

The one unexpected result was that addition of DTT exacerbated effects of heat shock of 

two-cell embryos on development when embryos were cultured continuously in low oxygen 

(Figure 3-7). Under certain conditions, thiol reagents such as DTT can be toxic to cells as a result 

of their oxidation and subsequent generation of lipid peroxides mediated by the Fenton reaction 

(Held et al. 1996). It is possible that similar toxic effects of DTT on two-cell embryos cultured in 

high oxygen obscured thermoprotective effects of DTT.  

In addition to being involved in mediating effects of heat shock on development, ROS 

were shown to be essential for induction of apoptosis by heat shock. Heat shock-induced 

apoptosis in preimplantation embryos is a developmentally regulated phenomenon with the 

acquisition of apoptosis responses first occurring for embryos greater than 8-16 cells on Day 4 

after fertilization (Paula-Lopes and Hansen 2002b; Jousan and Hansen 2004; Jousan and Hansen 

2007). The role of ROS in induction of apoptosis was studied in Day 5 embryos > 16 cells 
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because these embryos had acquired capacity for heat-shock induced apoptosis. The increase in 

apoptotic cells caused by heat shock was reduced or absent when embryos were cultured in low 

oxygen. Furthermore, DTT decreased apoptosis in embryos cultured at 38.5oC and completely 

blocked the increase in apoptosis induced by heat shock. In other cells as well, induction of 

apoptosis by heat shock is mediated by oxidative stress (Sreedhar et al. 2002; Zhao et al. 2006).  

It is important to point out that the block to development caused by heat shock is not the 

result of the increase in apoptosis. This conclusion is based on previous observations that 

inhibition of apoptosis responses with the caspase inhibitor, z-DEVD-fmk, exacerbates effects of 

heat shock on development (Paula-Lopes and Hansen 2002a) as well as present observations that 

DTT completely blocked induction of apoptosis caused by heat shock but was only partially 

effective in blocking effects of heat shock on development.  

The reduction in development caused by heat shock at the two-cell stage in the presence of 

high oxygen was greater if embryos were cultured in high oxygen continuously (95.5 – 100% 

reduction in development after 15 hours at 41oC; Figure 3-6 and 3-7B) than if they were cultured 

in low oxygen before and after heat shock (37.6 % reduction in development after 15 hours at 

41oC in the same experiment; Figure 3-7A). Thus, oxygen environment before and/or after heat 

shock is also a determinant of embryonic survival to heat shock. One possible explanation for 

these effects is that ROS formation occurs beyond the 24-hour period following initiation of heat 

shock. Another possibility is that heat shock is more likely to arrest development when the 

embryo is already compromised in developmental potential. Perhaps, heat shock affected 

development more for embryos maintained in high oxygen continuously because competence of 

these embryos to become blastocysts was reduced. If there is a relationship between embryonic 
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capacity for development and the magnitude of heat-shock induced arrest of development, the 

consequences of heat shock in vivo will depend upon the characteristics of the embryo. 

Oxygen content of the reproductive tract is low, ranging from 1.5 to 8.7% depending on 

segment of the tract and the species (Fischer and Bavister 1993). Given the importance of 

oxygen tension and ROS generation for heat shock-induced changes in embryonic function, the 

question remains as to whether an increase in temperature of the oviduct or uterus would result in 

reduced embryonic development and increased apoptosis. Heat stress during early embryonic 

development retards embryonic growth (Putney et al. 1988b; Ealy et al. 1993) but this effect 

could involve direct effects of heat shock on the embryo or alterations in reproductive tract 

environment. It is hypothesized that, despite the low oxygen concentration present in the 

reproductive tract, the redox state of the reproductive tract would be sufficient to allow effects of 

heat shock on the embryo. This is because the reproductive tract itself can generate ROS during 

heat shock. This interpretation is supported by results obtained in mice. In particular, maternal 

heat stress increased free radical production in the oviduct (Ozawa et al. 2004; Matsuzuka et al. 

2005b) and administration of the antioxidant melatonin reduced the effects of maternal heat 

stress on embryonic development in vivo (Matsuzuka et al. 2005a). Thus, the ROS environment 

of the heat-shocked embryo in vivo may be greater than for the embryo heat-shocked in vitro 

under low oxygen conditions.  
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Figure 3-1. Heat shock effects on development of two-cell embryos as modified by oxygen 
environment throughout culture. Two-cell embryos were cultured either at 38.5oC 
continuously or at 41oC for 9 hours followed by culture at 38.5oC thereafter. Embryos 
were cultured continuously in low (5%) or high (~21%) oxygen. Heat shock reduced 
embryo development in high oxygen but not in low oxygen (temperature x oxygen, P 
< 0.05). Values are least-squares means ± SEM of the proportion of two-cell embryos 
that became blastocysts on Day 8 after insemination. 
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Figure 3-2. Acute effect of oxygen environment on heat shocked two-cell embryos. Embryos 
cultured in high oxygen were harvested at the two-cell stage. Embryos were then 
cultured at either 38.5oC for 24 hours or at 41oC for 9 hours and 38.5oC for 15 hours 
in a low (5%) or high (~21%) oxygen environment. Thereafter, all embryos were 
cultured at 38.5oC in high oxygen. Heat shock reduced embryo development in high 
oxygen but not in low oxygen (temperature x oxygen, P < 0.05).Values are least-
squares means ± SEM of the proportion of two-cell embryos that became blastocysts 
on Day 8 after insemination. 
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Figure 3-3. Acute effect of oxygen environment on heat shocked embryos > 16 cells. Embryos 
were cultured in high oxygen until Day 5 when those ≥ 16 cells were harvested and 
cultured at 38.5oC for 24 hours or at 41oC for 9 hours and 38.5oC for 15 hours in a 
low (5%) or high (~21%) oxygen environment. Thereafter, all embryos were cultured 
at 38.5oC in high oxygen. Heat shock reduced embryo development in high oxygen 
but not in low oxygen (temperature x oxygen, P < 0.05).Values are least-squares 
means ± SEM of the proportion of embryos ≥ 16 cells that became blastocysts on Day 
8 after insemination. 
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Figure 3-4. Heat shock effects on apoptosis of embryos > 16 cells as modified by oxygen 
environment throughout culture. Embryos were cultured in high oxygen until Day 5 
when those ≥ 16 cells were harvested and cultured at 38.5oC for 24 hours or at 41oC 
for 9 hours and 38.5oC for 15 hours in a low (5%) or high (~21%) oxygen 
environment. Immediately thereafter, embryos were processed for determination of 
total cell number and the number of blastomeres that were apoptotic (i.e. positive for 
the TUNEL reaction). A) Heat shock did not affect total cell number (temperature and 
temperature x oxygen, P > 0.1). B) Heat shock increased the percent of apoptotic cells 
(temperature x oxygen, P < 0.05). Values are least-squares means ± SEM. 
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Figure 3-5. Effects of heat shock on apoptosis of Day 4 and Day 5 embryos > 16 cells cultured 
continuously in low oxygen. Embryos ≥ 16 cells were harvested at either Day 4 or 5 
after insemination and cultured at 38.5 for 24 hours or 41oC for 9 hours followed by 
15 hours at 38.5oC. Immediately thereafter, embryos were processed for 
determination of total cell number and the percent of blastomeres that were apoptotic 
(i.e. positive for the TUNEL reaction). A) Heat shock did not affect total cell number 
(temperature and temperature x oxygen, P > 0.1). B) Heat shock slightly increased the 
percent of apoptotic cells (temperature x oxygen, P < 0.05). Values are least-squares 
means ± SEM.  
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Figure 3-6. Protective action of dithiothreitol (DTT) on development of embryos heat shocked at 
the two-cell stage and cultured in high oxygen continuously. Embryos were harvested 
at the two-cell stage. Embryos were then cultured with various concentrations of DTT 
at either 38.5oC for 24 hours or at 41oC for 15 hours and 38.5oC for 9 hours. After 
washing, embryos were then cultured at 38.5oC until Day 8 after insemination without 
DTT. A) Percent of two-cell embryos that became blastocysts at Day 8. DTT 
increased (P < 0.05) and heat shock reduced (P < 0.05) the percent of embryos 
becoming blastocysts. B) Percent reduction in blastocyst development caused by heat 
shock. This variable was calculated as follows: [1 – (percent development at 
41°C/percent development at 38.5°C)]*100. The percent reduction in development 
caused by heat shock was less for embryos treated with DTT (P < 0.05). Values are 
least-squares means ± SEM. 
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Figure 3-7. Protective action of dithiothreitol (DTT) on development of embryos heat shocked at 
the two-cell stage and cultured in low oxygen at the two-cell stage. A) Embryos were 
cultured in low oxygen after insemination. Two-cell embryos were harvested at ~28 
hours after insemination and assigned to one of eight treatments in a 2 x 2 x 2 
factorial design with main effects of incubation temperature (38.5oC for 24 hours or 
41oC for 15 hours followed by 38.5oC for 9 hours), oxygen environment (high or low 
oxygen) and DTT (0 or 500 µM). After washing, embryos were placed in fresh drops 
of KSOM-BE2 and cultured in low oxygen at 38.5oC without DTT until Day 8 when 
blastocyst development was determined. Heat shock reduced development in all 
groups except for the embryos cultured in low oxygen in the absence of DTT 
(temperature x oxygen x DTT, P < 0.05). B) Embryos were cultured in high oxygen 
after fertilization. Two-cell embryos were harvested and cultured in high oxygen and 
assigned to one of 4 treatments in a 2 x 2 factorial design with main effects of 
incubation temperature (38.5oC for 24 hours or 41oC for 15 hours followed by 38.5oC 
for 9 hours) and DTT (0 or 500 µM). After 24 hours, embryos were washed 3 times in 
100 µl HEPES-TALP drops and placed in fresh drops of KSOM-BE2 and cultured in 
high oxygen at 38.5oC until Day 8 when blastocyst development was determined. 
DTT conferred partial protection against heat shock (DTT x temperature, P < 0.05). 
Values are least-squares means ± SEM. 
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Figure 3-8. Protective action of DTT on development of heat-shocked embryos ≥16 cells 
cultured in high oxygen continuously. Embryos cultured in high oxygen that were ≥ 
16 cells were harvested at Day 5 after insemination. Embryos were then cultured at 
either 38.5oC for 24 hours or at 41oC for 15 hours and 38.5oC for 9 hours in a high 
oxygen environment with various concentrations of DTT. After washing, embryos 
were then cultured at 38.5oC in a high oxygen environment until Day 8 after 
insemination. A) Percent of two-cell embryos that became blastocysts at Day 8. DTT 
increased (P < 0.05) and heat shock reduced (P < 0.05) the percent of embryos 
becoming blastocysts. B) Percent reduction in blastocyst development caused by heat 
shock expressed as a percentage of development for non-heat-shocked embryos [1 – 
(percent development at 41°C/percent development at 38.5°C)]*100. The percent 
reduction in development caused by heat shock was less for embryos treated with 
DTT (P < 0.05).Values are least-squares means ± SEM. 
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Figure 3-9. Protective action of dithiothreitol (DTT) on apoptosis of heat-shocked embryos ≥ 16 
cells cultured in high oxygen continuously. Embryos were cultured in high oxygen 
after insemination. On Day 5, embryos ≥16 cells were harvested and assigned to 
culture in the presence of 0, 50 or 500 µM DTT at 38.5oC for 24 hours or 41oC for 15 
hours followed by 38.5oC for 9 hours. Immediately thereafter, embryos were 
processed for determination of total cell number and the percent of blastomeres that 
were apoptotic (i.e. positive for the TUNEL reaction). A) There was no effect of 
temperature or DTT on total cell number (P > 0.1). B) Heat shock increased the 
percent of TUNEL positive nuclei among embryos treated with 0 µM DTT 
(temperature, P < 0.01) but not for embryos treated with DTT (temperature, P > 0.1). 
Values are least-squares means ± SEM.  
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CHAPTER 4 
ACTIONS OF CERAMIDE TO INHIBIT DEVELOPMENT AND INDUCE APOPTOSIS IN 

PREIMPLANTATION BOVINE EMBRYOS 

Introduction  

Like other cells, preimplantation embryos can undergo apoptosis in response to a variety of 

stimuli. Among these stimuli are several which induce apoptosis through the so-called intrinsic 

pathway that involves release of mitochondrial components and activation of caspase-9 and 

caspase-3 (Jin and El-Deiry 2005). Examples of these stimuli include oxidative stress, heat 

shock, arsenic, UV light and others (Krininger et al. 2002; Yuan et al. 2003; Qian et al. 2004; 

Chirico et al. 2007). The capacity for apoptosis is acquired during development. In the bovine 

embryo, for example, induction of apoptosis by heat shock and TNF-α first occurs between the 

8-cell and 16-cell stage of development (Paula-Lopes and Hansen 2002b; Soto et al. 2003a).  

Ceramide is an important signaling molecule in activation of the intrinsic pathway for 

apoptosis by heat shock, ultraviolet radiation, cytotoxic drugs, and free radicals (Sawai and 

Hannun 1999; Pettus et al. 2002). Ceramide can be generated by de novo synthesis through 

ceramide synthase and by hydrolysis of sphingomyelin by a class of sphingomyelin-specific 

phospholipase C molecules called SMases that cleave the phosphodiester bond of sphingomyelin 

to yield ceramide and phosphocoline. There are two forms of SMase that differ in pH optimum 

and subcellular localization. aSMase has wide tissue distribution, is localized to lysosomes and 

endosomes, and has a pH optimum around 5 (Kolesnick and Fuks 2003). nSMase exists as three 

types that have a pH optimum around 7. The nSMase1 is  ubiquitously expressed and is localized 

in the endoplasmic reticulum (Tomiuk et al. 1998), nSMase2 is found predominantly in the brain 

(Hofmann et al. 2000), and nSMase3 is more widely distributed in tissues, and is localized 

predominantly to the endoplasmic reticulum and mitochondria (Krut et al. 2006).  
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Activation of aSMase or nSMase has been shown to be essential for cell death induced by 

TNF-α (Guidarelli et al. 2001; Luberto et al. 2002), radiation (Hara et al. 2004a) and ultraviolet 

radiation (Kashkar et al. 2005). Kondo et al. (2000a) showed that heat shock of human HL-60 

leukemia cells reduced cellular sphingomyelin content, increased nSMase and ceramide content, 

and apoptosis. There was no increase in aSMase activity following heat shock. Verheij et al. 

(Verheij et al. 1996) showed that heat shock caused an increase in intracellular ceramide content 

in human U937 monoblastic leukemia cells and bovine aortic endothelial cells. In another study 

with HL-60 cells, heat shock increased aSMase and not nSMase and heat-shock induced 

apoptosis was blocked by inhibitors of ceramide generation (Chung et al. 2003).  

It is not known to what extent ceramide plays a role in apoptosis in the preimplantation 

embryo or whether aSMase or nSMase are involved in ceramide generation. The overall 

objective of the present study was to evaluate whether a functional ceramide signaling system 

was present in the preimplantation bovine embryo. The first goal was to determine the effect of 

ceramide on apoptosis and development of bovine embryos at different stages of development. In 

other cells, administration of ceramide, but not its inactive analogue dihydroceramide, can 

induce apoptosis (Obeid et al. 1993; Jarvis et al. 1994; Dbaibo et al. 1995; Ji et al. 1995; Pruschy 

et al. 1999; Di Nardo et al. 2000) and therefore, dihydroceramide was used as a negative control. 

The second goal was to determine if heat shock, an inducer of apoptosis in the preimplantation 

bovine embryo (Paula-Lopes and Hansen 2002b; Paula-Lopes and Hansen 2002a), induces 

aSMase or nSMase activity.  

Materials and methods 

Materials 

HEPES- TL, IVF-TL, and Sperm-TL solutions were purchased from Cell and Molecular 

Technologies Inc. (Lavallete, NJ) and used to prepare HEPES-TALP-TALP, IVF-TALP, and 
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Sperm-TALP as previously described (Fischer-Brown et al. 2002). OCM was TCM-199 with 

Hank’s salts without phenol red (Atlanta Biologicals, Norcross, GA) supplemented with 2% (v/v) 

bovine steer serum (Pel-Freez, Rogers, AR) containing 2 U/ml heparin, 100 U/ml penicillin-G, 

0.1 mg/ml streptomycin, and 1 mM glutamine. OMM was TCM-199 (BioWhittaker, 

Walkersville, MD) with Earle’s salts supplemented with 10% (v/ v) bovine steer serum, 2 µg/ml 

estradiol 17-β, 20 µg/ml bovine follicle stimulating hormone (Folltropin-V; Vetrepharm Canada, 

London, ON), 22 µg/ml sodium pyruvate, 50 µg/ml gentamicin sulfate, and 1 mM glutamine. 

Percoll was from Amersham Pharmacia Biotech (Uppsala, Sweden). Frozen semen from various 

bulls was donated by Southeastern Semen Services (Wellborn, FL). KSOM that contained 1 

mg/ml BSA was obtained from Cell and Molecular Technologies (Lavallete, NJ). EFAF-BSA 

was from Sigma (St. Louis, MO). On the day of use, KSOM was modified for bovine embryos to 

produce KSOM-BE2 as described elsewhere (Soto et al. 2003c). 

Substrates for caspase-9, 3 and 8 assays (Caspalux-9-M1-D2, PhiPhiLux-G1D2, and 

Caspalux- 8-L1D2, respectively) were obtained from Oncoimmunophilin (Gaithersburg, MD) and 

the assay kit for SMases (Amplex Red Sphingomyelinase Kit) was from Molecular Probes 

(Eugene, OR). A proteinase inhibitor cocktail was purchased from Sigma (St. Louis, MO). The 

In Situ Cell Death Detection Kit (fluorescein or TMR red) was obtained from Roche Diagnostics 

Corporation (Indianapolis, IN). Hoechst 33342 was purchased from Sigma, polyvinylpyrrolidone 

(PVP) from Eastman Kodak (Rochester, NY) and RQ1 RNase-free DNase from Promega 

(Madison, WI). All other reagents were purchased from Sigma or Fisher Scientific (Pittsburgh, 

PA).  

In Vitro Production of Embryos  

Embryo production was performed as previously described (Jousan and Hansen 2004). 

Briefly, COCs were obtained by slicing 2- to 10-mm follicles on the surface of ovaries (a mixture 
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of beef and dairy cattle) obtained from a local abattoir. Those COCs with at least one complete 

layer of compact cumulus cells were washed two times in OCM and used for subsequent steps. 

Groups of 10 COCs were placed in 50-µl drops of OMM overlaid with mineral oil and matured 

for 20–22 hours at 38.5°C in an atmosphere of 5% (v/v) CO2 in humidified air. Matured COCs 

were then washed once in HEPES-TALP and transferred in groups of 30 to 4-well plates 

containing 600 µl of IVF-TALP and 25 µl of PHE (0.5 mM penicillamine, 0.25 mM hypotaurine, 

and 25 µM epinephrine in 0.9% [w/v] NaCl) per well and fertilized with 1 x 106 Percoll-

purified spermatozoa from a pool of frozen-thawed semen from three bulls. A separate pool of 

bulls was used for each replicate of an experiment. After 10-12 hours at 38.5°C in an atmosphere 

of 5% CO2 in humidified air, putative zygotes were removed from fertilization wells, denuded of 

cumulus cells by vortex mixing in 1 ml of 1000 U/ml hyaluronidase in HEPES-TALP, and 

placed in groups of ~30 in 50-µl drops of KSOM-BE2. All drops of embryos were overlaid with 

mineral oil and cultured in an atmosphere of 5% CO2 in humidified air at 38.5oC until harvested 

for individual experiments.  

Embryos were cultured without mineral oil during the time when ceramide and 

dihydroceramide were used. This practice was to prevent diffusion of test substances from 

culture medium. Instead, embryos were cultured in 300 µl KSOM-BE2 in 4-well plates.  

TUNEL and Hoechst 33342 Labeling  

The TUNEL assay was used to detect DNA fragmentation associated with late stages of the 

apoptotic cascade and Hoeschst 33342 labeling was used to determine cell number. The 

procedure was performed as described previously in Chapter 3. 

Caspase Assays 

Embryos were washed three times in 50-µl drops of HEPES-TALP (prewarmed at 38.5°C) 

and incubated in 25-µl microdrops of HEPES-TALP containing 5 µM of Caspalux-9-M1D2, 
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PhiPhiLux-G1D2 or Caspalux- 8-L1D2 for caspase-9, 3 and 8, respectively at 38.5°C for 45 

minutes in the dark. Each assay included negative controls (incubated in HEPES-TALP only) 

and positive controls [embryos incubated for 24 hours in the presence of 100 µM of the 

mitochondrial uncoupling agent carbonyl cyanide m-chlorophenylhydrazone (CCCP) prior to 

caspase assay]. Following incubation, embryos were washed twice in 50-µl drops of HEPES-

TALP and placed on two-well slides containing 100 µl of prewarmed HEPES-TALP. Embryos 

were viewed using a Zeiss Axioplan microscope using FITC filter. Images were acquired using 

AxioVision software and an AxioCam MRm digital camera. Using the computer mouse, a 

circular draw function was manually performed around the internal side of the zona pellucida and 

intensity per unit area was determined using AxioVision software. 

Experiments 

Induction of apoptosis in Day 5 embryos ≥ 16 cells by ceramide.  

Embryos ≥ 16 cells were harvested on day 5 after insemination. Embryos were randomly 

assigned to one of the following treatments: 50 μM C(2)-ceramide for 9 hours followed by 15 

hours in medium with ethanol vehicle [0.34% (v/v)] (C2-9 h), 50 μM C(2)-ceramide for 24 hours 

(C2-24 h), 50 μM C(2)-dihydroceramide for 9 hours followed by 15 hours in medium with 

ethanol vehicle (DC2-9 h),  50 μM C(2)-dihydroceramide for 24 hours (DC2-24 h), or 24 hours 

of medium with ethanol vehicle. The C(2)-dihydroceramide was used as a negative control 

because it is an inactive analogue of C(2) ceramide. During the treatment period, embryos were 

cultured in groups of 10 to 19, depending on the replicate, in 300 μl KSOM-BE2 in 4-well plates 

in an atmosphere of 5% CO2 in humidified air at 38.5oC. There were similar numbers of embryos 

per treatment within a replicate. At 24 hours after treatment, embryos were fixed in 4% (w/v) 

paraformaldehyde and stored in PBS-PVP at 4°C until analysis by TUNEL and Hoechst 33342 

labeling. The experiment was replicated 3 times with a total of 200 embryos. 



 

82 

Induction of caspase-9, 3 and 8 activity in Day 5 embryos ≥ 16 cells by ceramide.  

Embryos ≥ 16 cells harvested on day 5 after fertilization were randomly assigned to one of 

the following treatments: 50 μM C(2)-ceramide for 24 hours (C2-24 h), 50 μM C(2)- 

dihydroceramide for 24 hours, and medium with ethanol vehicle [0.34% (v/v)]. Embryos were 

cultured in groups of 8 to 22, depending on the replicate, in 300 μl KSOM-BE2 in 4-well plates 

in 5% CO2 in humidified air at 38.5oC. There were similar numbers of embryos per treatment 

within a replicate. After 24 hours, embryos were washed 4 times in HEPES-TALP and activity 

of caspase-9 (replicates = 4; total n = 167 embryos), caspase-3 (replicates = 2; total n = 76 

embryos) and caspase-8 (replicates = 2; total n = 78 embryos) was measured immediately 

thereafter.  

Effect of ceramide treatment of Day 5 embryos ≥ 16 cells on development to the blastocyst 
stage.  

Embryos ≥ 16 cells were harvested on day 5 after insemination. Embryos were randomly 

assigned to one of the following treatments: 50 μM C(2)-ceramide for 9 hours followed by 15 

hours in medium with ethanol vehicle [0.34% (v/v)] (C2-9 h), 50 μM C(2)-ceramide for 24 hours 

(C2-24 h),  50 μM C(2)-dihydroceramide for 9 hours followed by 15 hours in medium with 

ethanol vehicle (DC2-9 h),  50 μM C(2)-dihydroceramide for 24 hours (DC2-24 h), or 24 hours 

of vehicle control [ethanol, 0.34% (v/v)]. During the treatment period, embryos were cultured in 

groups of 21 to 30, depending on replicate, in 300 μL KSOM-BE2 in 4-well plates in 5% CO2 in 

humidified air at 38.5oC. There were similar numbers of embryos per treatment within a 

replicate. At 24 hours after initiation of treatment, embryos were washed 3 times in HEPES-

TALP, placed in 50 µL drops of KSOM-BE2 overlaid with mineral oil, and cultured in an 

atmosphere of 5% CO2 in humidified air at 38.5oC. On day 8 after fertilization, the percentage of 
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treated embryos becoming blastocysts was determined. The experiment was replicated 3 times 

with a total of 336 embryos. 

Apoptosis and cytokinesis in two-cell embryos treated with ceramide. 

Two-cell embryos harvested 27-29 hours after insemination were randomly assigned to 

one of the following treatments: 50 μM C(2)-ceramide for 9 hours followed by 15 hours in 

medium with ethanol vehicle [0.34% (v/v)] (C2-9 h), 50 μM C(2)-ceramide for 24 hours (C2-24 

h),  50 μM C(2)-dihydroceramide for 9 hours followed by 15 hours in medium with ethanol 

vehicle (DC2-9 h),  50 μM C(2)-dihydroceramide for 24 hours (DC2-24 h), or 24 hours of 

culture in medium with ethanol vehicle. During the treatment period, embryos were cultured in 

groups of 6 to 18, depending on the replicate, in 300 μl KSOM-BE2 in 4-well plates in 5% CO2 

in humidified air at 38.5oC. There were similar numbers of embryos per treatment within a 

replicate. At 24 hours after initiation of treatment, embryos were fixed in 4% (w/v) 

paraformaldehyde and stored in PBS-PVP at 4°C until analysis by TUNEL and Hoechst 33342 

labeling. Several endpoints were determined – the proportion of nuclei exhibiting TUNEL 

labeling, total number of nuclei, total cell number and the nuclei:cell ratio. Cell number was 

distinguished from nuclei number by maximizing cell auto-fluorescence digitally so that each 

cell could be seen individually. The experiment was replicated 5 times with a total of 260 

embryos. Cell number was determined separately from nuclei number for 3 replicates only. Data 

for cell number and nuclei:cell ratio were obtained on 179 embryos.  

Caspase-9 activity in two-cell embryos treated with ceramide.  

Two-cell embryos harvested 27-29 hours after fertilization were randomly assigned to be 

treated with one of the following treatments: 50 μM C(2)-ceramide for 24 hours (C2-24 h),  50 

μM C(2)-dihydroceramide for 24 hours (DC2-24 h), or 24 hours in vehicle [ethanol, 0.34% 
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(v/v)]. Embryos were washed 4 times in HEPES-TALP and caspase-9 activity was measured 

immediately thereafter. The experiment was replicated 3 times with a total of 170 embryos.  

Acid and neutral sphingomyelinase activities induced by heat-shock in Day 5 embryos ≥ 16 

cells.  

Acid and neutral SMase activity was determined in embryos using the Amplex Red 

Sphingomyelinase Kit (Molecular Probes). In this assay, exogenous sphingomyelin is cleaved by 

SMase present in the sample to yield phosphocoline and ceramide. Phosphocoline is further 

cleaved by alkaline phosphatase to generate choline, which in turn is further oxidized by choline 

oxidase to generate H2O2. The Amplex Red reagent is converted to the fluorescent molecule 

resorufin in the presence of horseradish peroxidase. 

Embryos ≥ 16 cells harvested on Day 5 after fertilization were randomly assigned to be 

cultured at 38.5oC or 41oC for 15 hours in 50 µL drops of KSOM-BE2 in groups of 23 to 32. 

After heat shock, all embryos from each treatment (32 to 96 and 50 to 86 embryos for nSMase 

and aSMase, respectively, depending on the replicate) were pooled in 5 µl of KSOM-BE2 and 

mixed with 5 µl of either nSMase lysis buffer [0.2 M Tris-HCl, pH 7.4 containing 20 mM 

MgCl2, 2% (v/v) Triton-X and 2% (v/v)10x proteinase inhibitor cocktail] or aSMase lysis buffer 

[0.1 M sodium acetate buffer, pH 5.0 containing 2% (v/v) Triton-X and 2% (v/v)10x proteinase 

inhibitor cocktail]. Samples were immediately frozen at -80oC until assayed. Prior to the assay, 

samples were thawed at 38.5oC and frozen-thawed in liquid nitrogen three times to allow further 

cell membrane disruption.  

Enzyme reactions were prepared using enzymes and other reagents provided with the kit. 

A total of 32 to 96 (nSMase) or 50 to 86 (aSMase) embryo equivalents in 10 µl of a 1:1 (v/v) 

mixture of KSOM-BE2 and lysis buffer were included in each enzyme reaction. For each 
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replicate, the number of embryos in the enzyme reaction was the same for each treatment. 

Additional enzyme reactions included a positive control (prepared immediately before the assay) 

of 0.4 U/ml bacterial SMase in 100 µl 1X reaction buffer (0.1 M Tris-HCl and 10 mM MgCl2, 

pH 7.4) and a negative control consisting of a 1:1 mixture of KSOM-BE2 and lysis buffer.  

For nSMase, each enzyme reaction consisted of 10 µl sample and 100 µl working solution 

(0.1 M Tris-HCl and 10 mM MgCl2, pH 7.4 containing 2 U/mL horseradish peroxidase, 0.2 

U/mL choline oxidase, 8 U/mL alkaline phosphatase and 0.5 mM sphingomyelin) placed in a 

well of a 96-well plate. Fluorescence was measured using a BioTek FLx 800 fluorometer 

(BioTek, Winooski VT) with excitation and emission wavelengths set to 560 nm and 590 nm, 

respectively, at 30 minute-intervals for 390 minutes at 37oC.  

For the aSMase, continuous readings were not possible because the Amplex Red reaction 

occurs optimally in neutral pH and aSMase activity is optimal at pH 5-5.5. Therefore, each 

enzyme reaction consisted of incubation of 1 µL 5 mM sphingomyelin added to the 10 µL 

sample for 270 minutes at 37oC. Then, 100 µL working solution (0.1 M Tris-HCl and 10 mM 

MgCl2, pH 7.6 containing 2 U/mL horseradish peroxidase, 0.2 U/mL choline oxidase, and 8 

U/mL alkaline phosphatase without sphingomyelin) was added to the reaction and fluorescence 

recorded after 30 minutes at 37oC. For both aSMase and nSMase, relative fluorescence was 

subtracted from background and divided by the number of embryos present in the reaction before 

statistical analysis. Experiments were replicated 10 and 11 times for nSMase and aSMase, 

respectively.  

Statistical Analysis  

Data were analyzed by least-squares analysis of variance using the GLM procedure of SAS 

(SAS for Windows, Version 9, Cary, NC). Data calculated on a replicate basis were percent of 

embryos becoming blastocysts and SMase activity. Data analyzed on an embryo basis were the 
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percent of blastomeres that were TUNEL-positive, total embryo cell number and caspase 

fluorescent intensity. For all analyses, mathematical models included replicate, other main 

effects (fixed), and interactions. Tests of significance were made using error terms determined by 

calculation of expected mean squares with replicate as a random effect and other main effects as 

fixed effects. When necessary, mean separation tests were performed using the Tukey test. 

Differences between treatments at specific time-points in the enzyme assay for nSMase were 

determined using the slice feature of the GLM procedure of SAS.  

Results  

Induction of Apoptosis in Day 5 Embryos ≥ 16 Cells by Ceramide.  

Quantitative analysis of total cell number and percentage of cells that were TUNEL-

positive are illustrated in Figure 4-1. Total cell number was generally unaffected by treatment 

except that treatment with C(2)-ceramide for 24 hours reduced cell number (P < 0.05). Treatment 

with C(2)-ceramide for 24 hours caused an increase in the percentage of TUNEL positive cells 

compared to other treatments (P < 0.05), except for treatment with ceramide for 9 hours (P = 

0.08). The inactive analog of ceramide, C(2)-dihydroceramide, did not increase the proportion of 

cells that were TUNEL-positive (P > 0.1).  

Induction of Caspase-9, 3 and 8 Activity in Day 5 Embryos ≥ 16 Cells by Ceramide.  

Results are shown in Figure 4-2. Treatment of Day 5 embryos with C(2)-ceramide caused a 

significant increase in caspase-9 activity (P < 0.05). There was also a numerical increase in 

caspase-3 activity after treatment with C(2)-ceramide but the increase was not statistically 

significant (P > 0.1). There was no effect of C(2) ceramide on caspase-8 activity and no effect of 

C(2)-dihydroceramide on activity of caspase-9, 3 or 8.  
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Effect of Ceramide Treatment of Day 5 Embryos ≥ 16 Cells on Development to the 

Blastocyst Stage.  

The proportion of Day 5 embryos developing to the blastocyst stage was generally 

unaffected by treatment (Figure 4-3). The exception was for embryos treated with C(2)-ceramide 

for 24 hours which had lower development (P < 0.01).  

Apoptosis, caspase-9 Activity and Cytokinesis in Two-Cell Embryos Treated with 

Ceramide.  

As shown in Figure 4-4A, The total number of nuclei was reduced by treatment with C(2)-

ceramide for 24 hours (Figure 4-4A; P < 0.01,) but not by other treatments. The proportion of 

blastomeres that were TUNEL-positive was very low (< 2%) and was not affected by treatment 

(Figure 4-4B; P > 0.1). Similarly, there was no effect of any treatment on caspase-9 activity (P > 

0.01).  

In the course of the study, it was observed that embryos treated with C(2)-ceramide, but 

not other treatments, often had multinucleated cells (see Figure 4-5 for representative results). To 

quantify this phenomenon, the number of nuclei:cell was determined for the last three replicates 

of the study (Table 4-1). In this subset of embryos, C(2)-ceramide treatment for 24 hours reduced 

total number of nuclei (P < 0.05), total number of cells (P < 0.05) and increased the nuclei:cell 

ratio (P < 0.05). Moreover, C(2)-ceramide treatment for 24 hours increased the number of nuclei 

per cell. Indeed, 26% (9 of 34) of the embryos treated with C(2)-ceramide for 24 hours had at 

least one blastomere with 3 or 4 nuclei, whereas multinucleated cells (i.e.,with 3 or 4 nuclei) 

were not observed for any other treatment.  
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Acid and Neutral Sphingomyelinase Activities Induced by Heat Shock in Day 5 Embryos ≥ 

16 Cells.  

There was no difference in aSMase activity between control and heat-shocked embryos 

(Figure 4-6A). In contrast, heat shock increased the amount of nSMase activity as determined by 

differences in enzyme beginning 2 hours after initiation of incubation (Figure 4-6B; P < 0.05).  

Discussion 

Experiments presented here demonstrate the existence of a functional ceramide signaling 

system in the preimplantation bovine embryo that regulates apoptosis, development, and 

cytokinesis. Two lines of evidence support this contention. First, it was shown that exposure of 

embryos to ceramide caused profound changes in cellular function. In particular, ceramide, but 

not its inactive analogue dihydroceramide, induced apoptosis in a stage-specific manner. 

Moreover, long-term (24 hours) exposure to ceramide reduced ability of Day 5 embryos to 

develop to the blastocyst stage and reduced nuclear proliferation and cytokinesis at the two-cell 

stage. Secondly, it was shown that the enzymatic pathway for ceramide synthesis is activated by 

an environmental signal that itself increases apoptosis and reduces development. In particular, 

heat shock increased activity of nSMase which converts sphingomyelin to ceramide.  

Administration of ceramide has been shown to induce apoptosis in a variety of cell types 

(Ji et al. 1995; Susin et al. 1997; Ito et al. 1999; Di Nardo et al. 2000; Kim et al. 2005c) but this 

is the first report that ceramide can induce apoptosis in preimplantation embryos. Exposure of 

Day 5 embryos ≥ 16 cells to ceramide led to an increase in the percentage of nuclei that were 

apoptotic as determined by the TUNEL assay. Activation of TUNEL labeling appears to be 

mediated by the mitochondrial or intrinsic pathway (Krininger et al. 2002; Yuan et al. 2003; 

Qian et al. 2004; Chirico et al. 2007) for apoptosis induction because ceramide increased 

amounts of caspase-9 and tended to increase amounts of caspase-3. In contrast, there was no 
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increase in caspase-8 activity. This caspase plays a central role in the receptor-mediated or 

extrinsic pathway for apoptosis (Sprick and Walczak 2004). 

The effect of ceramide on apoptosis of the Day 5 embryo was time dependent. Although 

the effect was not significant, the magnitude of the increase in apoptosis caused by 9-hour 

exposure to ceramide is similar to that observed for heat shock at 41oC for 9 hours (Jousan and 

Hansen 2004; de Castro e Paula and Hansen 2005). 

In contrast to the situation with the Day 5 embryo, there was no increase in TUNEL 

labeling or caspase-9 activity when embryos were exposed to ceramide at the two-cell stage. 

This finding was expected because the two-cell embryo is resistant to activation of apoptosis by 

a range of pro-apoptotic agents including heat shock (Paula-Lopes and Hansen 2002b), arsenic 

(Krininger et al. 2002) and TNF-α (Soto et al. 2003a). For heat shock, the stimulus that has been 

studied in most detail, embryos acquire the capacity for apoptosis between the eight and sixteen 

cell stage (Paula-Lopes and Hansen 2002b). The fact that ceramide-induced apoptosis is also 

developmentally regulated is indicative that the block to apoptosis at the two-cell stage is not 

simply due to reduced capacity for ceramide synthesis because exogenous ceramide did not 

reverse the block to apoptosis. Although not undergoing apoptosis, two-cell embryos are 

responsive to ceramide as indicated by the fact that exposure to ceramide for 24 hours reduced 

total nuclei per embryo and caused a partial block to cytokinesis. 

Exposure of Day 5 embryos to ceramide also blocked development to the blastocyst stage 

if exposure was for 24 hours but not if exposure was for 9 hours. It is not surprising that 9-hour 

exposure to ceramide did not affect development even while causing a slight increase in 

apoptosis. The preimplantation embryo is capable of tolerating a slight amount of apoptosis and, 

indeed, limited apoptosis may help embryos survive exposure to cellular stress. For example, 
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TNF-α did not affect development of bovine embryos despite causing an increase in apoptotic 

cells (Soto et al. 2003b). Inhibition of apoptosis responses with caspase-3 inhibitor actually 

increased sensitivity of bovine embryos to the anti-developmental effects of heat shock (Paula-

Lopes and Hansen 2002a). However, when the damage to the embryo is too severe and apoptosis 

is widespread, for example when RNA interference was used to reduce amounts of the anti-

apoptotic protein survivin (Park et al. 2007), development can be compromised. 

An unknown question from the current experiments is whether the inhibition to 

development of Day 5 embryos caused by 24-hour exposure to ceramide is the result of the 

large-scale induction of apoptosis or to other, apoptosis-independent events. While the former 

seems likely, there may also be apoptosis-independent effects as well. This contention is based 

on the observation that ceramide exposure for 24 hours reduced nuclei number and cytokinesis 

when given to the two-cell embryo that is resistant to apoptosis. The conclusion that ceramide 

blocks cytokinesis is based on the observation that embryos treated with ceramide contained 

multinucleated cells. This phenotype is compatible with the phenomenon of mitotic catastrophe 

(Huang et al. 2005) whereby mitosis is blocked through checkpoint activation (Molz et al. 1989; 

Huang et al. 2005). Whether the increase in the number of multinucleated cells induced by 

ceramide is a result of damage to DNA or organelles or by regulation of cell cycle regulatory 

molecules requires further investigation. To the authors’ knowledge, this is the first report 

demonstrating that ceramide can cause formation of multinucleated cells. 

Ceramide is an important signal for induction of apoptosis by heat shock in a variety of 

cells (Goldkorn et al. 1998; Mansat-de Mas et al. 1999; Chung et al. 2003). Current results are 

consistent with the idea that ceramide is also an important signal for the heat-shocked embryo. 

The magnitude of the increase in apoptosis caused by 9 hour exposure to ceramide is similar to 
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that observed for heat shock at 41oC (Jousan and Hansen 2004; de Castro e Paula and Hansen 

2005). Importantly, heat shock caused an increase in nSMase activity in Day 5 embryos. In 

contrast, there was no increase in aSMase activity. Heat shock of HeLa cells increased nSMase 

activity without increasing aSMase (Kondo et al. 2000b).  

The observation that heat shock can increase nSMase activity is an important one for 

demonstrating a role for ceramide in the preimplantation embryo because it demonstrates the 

capacity for regulation of ceramide synthesis by an environmental signal known to use ceramide 

as signaling molecule. This result, in conjunction with findings that ceramide can trigger 

apoptosis, reduce development, and inhibit cytokinesis, establishes a ceramide signaling system 

in the bovine preimplantation embryo. 
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Figure 4-1. Effect of ceramide on induction of apoptosis in embryos ≥ 16 cells at Day 5 after 
insemination. A) Total cell number and B) percent of blastomeres that are TUNEL-
positive for control embryos and embryos treated with ceramide (C2) or its inactive 
analogue dihydroceramide (DC2) for 9 or 24 hours. Bars with different superscripts 
differ (P < 0.05). Data are least-squares means ± SEM 
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Figure 4-2. Induction of caspase-9, 3 and 8 activities by ceramide in embryos ≥ 16 cell on Day 5 
after insemination. Embryos were either untreated (control) or were treated with 
ceramide (C2) or its inactive analogue dihydroceramide (DC2) for 24 hours. A) 
Caspase-9 activity. B) Caspase-3 activity. C) Caspase-8 activity. Values are least-
squares means ± SEM. Bars with different superscripts differ (P < 0.05).  
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Figure 4-3. Effect of ceramide treatment on blastocyst development of embryos ≥ 16 cells at Day 
5 after insemination. Data are least-squares means ± SEM of the percent of embryos 
that developed to the blastocyst stage at Day 8 after insemination. Embryos were 
either untreated (control) or were treated with ceramide (C2) or its inactive analogue 
dihydroceramide (DC2) for 9 or 24 hours. Bars with different superscripts differ (P < 
0.05). 
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Figure 4-4. Effect of ceramide on induction of apoptosis and caspase-9 activity at the two-cell 
stage. Two-cell embryos were treated with ceramide (C2) or its inactive analogue 
dihydroceramide (DC2) for 9 or 24 hours. A) Total cell number. B) Percent apoptosis. 
C) Caspase-9 activity. Bars with different superscripts differ (P < 0.05). Data 
represent least-squares means ± SEM 
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Figure 4-5. Representative images illustrating the effects of ceramide on number of nuclei per 
blastomere. Two-cell embryos were treated with vehicle control (A), 50 µM C(2)-
dihydroceramide (B) or 50 µM C(2)-ceramide (C-D). Nucleic acid was labeled using 
Hoescht 33342 and individual cells (red) were identified by maximizing cell auto-
fluorescence digitally. Arrows show blastomeres with 4 nuclei. Bar = 20 µM. 
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Figure 4-6. Acid and neutral sphingomyelinase (SMase) activity in Day 5 embryos > 16 cells as 
affected by heat shock. A) Acid SMase was measured at a single time point after 4.5-
hour incubation of lysed embryos with sphingomyelin as substrate. B) For neutral 
SMase, solid lines represent control embryos and dotted lines represent heat shocked 
embryos. Values are least squares means ± SEM. Asterisks represent significant 
differences between treatments (P < 0.05). 
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Table 4-1. Effects of ceramide on cytokinesis of two-cell embryos. 
 

 

 

 

 

 

 

 

a Data represent least-squares means + SEM. b Treatments represent exposure to ceramide 

(C2) or its inactive analogue dihydroceramide (DC2) for 9 or 24 hours.c-d Means with different 

superscripts within a column differ at P < 0.05. 

 

2.2 ± 0.1d5.9 ± 0.4d3.1 ± 0.3dC2-24 h

1.1 ± 0.1c7.5 ± 0.3c7.2 ± 0.3cDC2-24 h

1.3 ± 0.1c7.2 ± 0.3c6.0 ± 0.3cC2-9 h

1.2 ± 0.1c7.3 ± 0.3c6.5 ± 0.3cDC2-9 h

1.1 ± 0.1c7.3 ± 0.3c6.6 ± 0.3cControl

nuclei/cell ratioaTotal nuclei numberaTotal cell numberaTreatmentb

2.2 ± 0.1d5.9 ± 0.4d3.1 ± 0.3dC2-24 h

1.1 ± 0.1c7.5 ± 0.3c7.2 ± 0.3cDC2-24 h

1.3 ± 0.1c7.2 ± 0.3c6.0 ± 0.3cC2-9 h

1.2 ± 0.1c7.3 ± 0.3c6.5 ± 0.3cDC2-9 h

1.1 ± 0.1c7.3 ± 0.3c6.6 ± 0.3cControl

nuclei/cell ratioaTotal nuclei numberaTotal cell numberaTreatmentb
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CHAPTER 5 
INTERACTIONS BETWEEN OXYGEN TENSION AND GLUCOSE CONCENTRATION 
THAT MODULATE ACTIONS OF HEAT SHOCK ON BOVINE OOCYTES DURING IN 

VITRO MATURATION 

Introduction 

Oocyte viability is modified by the microenvironment in which the oocyte undergoes 

growth and maturation. One environmental determinant of oocyte viability is heat stress. 

Exposure of lactating dairy cows to environmental conditions leading to hyperthermia during 

summer can alter the temperature at which the oocyte undergoes growth and maturation. Heat 

stress also alters secretion of hormones involved in follicular function (e.g. steroids, LH, FSH 

and inhibin (Wise et al. 1988; Roth et al. 2000; Wolfenson et al. 2000). That oocytes can be 

compromised by heat stress is indicated by reduced capacity for fertilization in vitro (Rocha et al. 

1998) and in vivo (Sartori et al. 2002b) and reduced capacity for development of embryos 

derived from fertilized or chemically-activated oocytes (Zeron et al. 2001; Al-Katanani et al. 

2002).  

Experiments evaluating restoration of follicular and oocyte function after heat stress are 

indicative that heat stress affects the follicle 30 to 40 days before estrus or earlier (Roth et al. 

2001a; Roth et al. 2001b). The period during which the oocyte is susceptible to disruption by 

heat stress extends through the processes of maturation when the oocyte completes cytoplasmic 

and nuclear maturation. Indeed, heat stress applied for 10 hours beginning at estrus caused a 

reduction in the proportion of oocytes that became normal embryos later in development (Putney 

et al. 1989). Effects of heat stress during maturation could reflect either direct effects of elevated 

temperature on function of the oocyte and its supporting cumulus cells, alterations in blood flow 

to the ovary (as shown in the rabbit (Lublin and Wolfenson 1996)), or hormone secretion 

(Wolfenson et al. 2000). Direct effects of elevated temperature on oocyte maturation have been 
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demonstrated in vitro using experiments where COCs were matured in incubators under 

temperatures similar to those experienced by cows during heat stress. Heat shock during 

maturation also induced oocyte apoptosis (Roth and Hansen 2004b; Roth and Hansen 2004a), 

disrupted chromosome alignment (Ju et al. 2005; Roth and Hansen 2005), and decreased the 

number of oocytes reaching metaphase II (Payton et al. 2004; Roth and Hansen 2005). The 

proportion of oocytes that become blastocysts after insemination was also reduced by heat shock 

during maturation (Payton et al. 2004; Roth and Hansen 2004b; Roth and Hansen 2004a; 

Edwards et al. 2005; Ju et al. 2005). This reduction was associated with reduced fertilization rate 

in some experiments (Roth and Hansen 2004b; Roth and Hansen 2004a) and in a reduction in the 

proportion of cleaved embryos that develop to the blastocyst stage (Payton et al. 2004; Edwards 

et al. 2005; Ju et al. 2005). 

One caveat with relating results of most in vitro studies of heat shock to the situation in 

vivo is that culture experiments are usually carried out in a gaseous environment high in oxygen 

(~21%, v/v). This oxygen tension is higher than encountered by the COCs in vivo, which has 

been estimated in follicular fluid as 5 to 9% in humans (Fischer et al. 1992; Van Blerkom et al. 

1997) and from < 5 to 14% in cows (Redding et al. 2006). Effects of heat shock on 

preimplantation bovine embryos were greater when culture is performed in atmospheric oxygen 

than when performed in 5% oxygen (Chapter 3). Thus, it is possible that effects of heat shock on 

oocytes in vitro would not be duplicated in the lower oxygen environments in vivo.  

The objective of the present study was to test the hypothesis that effects of heat shock 

during maturation on oocyte competence for fertilization and development would be reduced in a 

low oxygen environment. To test this hypothesis, it was first necessary to establish maturation 

conditions where oxygen concentration would have little effect on the outcome. Using a 
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modified Synthetic Oviduct Fluid (SOF) as maturation medium, Hashimoto et al. (Hashimoto et 

al. 2000a) have shown that optimal maturation of oocytes under 5% oxygen requires raising 

glucose concentration from 5.6 mM to 20 mM. Therefore, an initial experiment was performed 

to determine effects of oxygen environment during maturation as performed in two media 

(modified TCM-199 vs modified SOF) and under two glucose concentrations (5.6 mM vs 20 

mM). Once conditions for maturation that were unaffected by oxygen concentration were 

determined, a second experiment was performed to determine effect of oxygen concentration on 

actions of heat shock during maturation. Heat shock was applied during the first 12 hours of 

maturation because oocytes are more sensitive to heat shock during this period than during the 

last 12 hours of maturation (Edwards and Hansen 1996). 

Materials and Methods 

Preparation of Media 

OCM was TCM-199 with Hank’s salts and without phenol red (Atlanta Biologicals, 

Norcross, GA, USA) that was supplemented with 2% (v/v) bovine steer serum (Pel-Freez, 

Rogers, AR, USA) containing 2 U/mL heparin. Medium was also supplemented with 100 U/mL 

penicillin-G, 0.1 mg/mL streptomycin, and 1 mM glutamine. Two media were used for oocyte 

maturation: a modified TCM-199 (mTCM-199) and a modified SOF (mSOF). The TCM-199 

contained Earle’s salts and was purchased from BioWhittaker (Walkersville, MD, USA). The 

SOF was prepared based on the formulation described by Fischer-Brown et al. (Fischer-Brown et 

al. 2002) by the Specialty Media Division of Millipore (Billerica, MA, USA). Both media were 

modified by adding 10% (v/v) bovine steer serum, 2 µg/mL estradiol 17-β, 20 µg/mL bovine 

FSH (Folltropin-V; Vetepharm Canada, Belleville, ON, Canada), 50 µg/mL gentamicin sulfate, 

and 1 mM glutamine. In addition, mSOF contained 1X Basal Medium Eagle amino acids 

(Sigma, St. Louis, MO, USA) as used by Hashimoto et. al. (Hashimoto et al. 2000a). The 
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mTCM-199 was also supplemented with 22 µg/mL sodium pyruvate. The media HEPES-TL, 

IVF-TL, and Sperm-TL were purchased from Specialty Media and used to prepare HEPES-

TALP, IVF-TALP, and Sperm-TALP as previously described (Parrish et al. 1986).  Percoll was 

from Amersham Pharmacia Biotech (Uppsala, Sweden). KSOM that contained 1 mg/mL bovine 

serum albumin was obtained from Specialty Media. EFAF-BSA was from Sigma. On the day of 

use, KSOM was modified for bovine embryos to produce KSOM-BE2, as described elsewhere 

(Soto et al. 2003c).  

In Vitro Production of Embryos  

COCs were obtained by slicing 2- to 10-mm follicles on the surface of ovaries (a mixture 

of beef and dairy cattle) obtained from Central Beef Packing Co. (Center Hill, FL, USA). Those 

COCs with at least two complete layers of compact cumulus cells were washed two times in 

OCM and used for subsequent steps. Groups of 10 COCs were placed in 50-µL drops of either 

mTCM-199 or mSOF, depending on the experiment, overlaid with mineral oil, and matured for 

20 to 22 hours. Temperature and oxygen concentration varied between treatments and 

experiments and are described in detail in the next section. Matured COCs were washed once in 

HEPES-TALP and transferred in groups of ~30 to 4-well plates containing 600 µL of IVF-TALP 

and 25 µL of PHE per well and fertilized with 1 x 106 Percoll-purified spermatozoa. In each 

replicate, the sperm represented a pool of frozen-thawed semen from three bulls (donated by 

Southeastern Semen Services, Wellborn, FL, USA) and a different pool was used for each 

replicate. After 10 to 12 hours at 38.5°C in an atmosphere of 5% CO2 in humidified air (i.e., 21% 

oxygen), putative zygotes were removed from fertilization wells, denuded of cumulus cells by 

vortex mixing in 1 mL of 1000 U/mL hyaluronidase in HEPES-TALP, and placed in groups of 

up to 30 in 50-µL drops of KSOM-BE2. Within a replicate, approximately equal (±1) numbers of 

embryos were added for all treatments. All drops of embryos were overlaid with mineral oil and 
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cultured at 38.5oC in a humidified atmosphere of 5% O2, 5% CO2, and the balance N2. Embryos 

were cultured until Day 8 after insemination (Day 0 = day of insemination). 

Comparison of mTCM-199 vs mSOF as Maturation Media in High and Low Oxygen 
Environments 

Oocytes were collected during September. The experimental design was a 2 x 2 x 2 

factorial with main effects of maturation medium, glucose concentration, and oxygen 

environment. COCs were collected and placed in 50 uL drops of mTCM-199 or mSOF that were 

formulated to contain 5.6 or 20 mM glucose. Maturation was in either 5% CO2 in humidified air 

(high oxygen) or a humidified environment of 5% O2 and 5% CO2 with the balance N2 (low 

oxygen). Fertilization and embryo culture were performed as described earlier. Development was 

ascertained once, on Day 8 after insemination, to determine the percentage of embryos becoming 

blastocysts. The experiment was replicated six times, using a total of 2020 oocytes. All eight 

treatments were represented in each replicate. 

Effect of Oxygen Concentration on Heat Shock Effects during Oocyte Maturation 

Oocytes were collected during the months of October through February. The design was a 

2 x 2 x 2 factorial, with main effects of temperature, glucose concentration and oxygen 

environment. COCs were collected and matured for 22 hours at either 38.5°C for 22 hours or at 

41°C for 12 hours followed by 38.5°C for 10 hours. Maturation was performed in 50 µL drops of 

mSOF containing 5.6 or 20 mM glucose and in a high or low oxygen atmosphere. The CO2 

environment was maintained at 5% (v/v) for maturation at 38.5oC and was raised to 6% for 

maturation at 41oC to correct for reduced solubility of CO2 and to maintain the pH of the 

medium at a value similar to that for maturation at 38.5oC (pH~7.4) (Rivera and Hansen 2001). 

Fertilization and embryo culture were performed as described earlier. Embryos were examined 

for development twice. Cleavage rate was recorded on Day 3 after insemination and the 
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percentage of oocytes and cleaved embryos becoming blastocysts was recorded on Day 8 after 

insemination. The experiment was replicated nine times using a total of 3215 oocytes. All eight 

treatments were represented in each replicate. 

Statistical Analysis  

Data on percentage of oocytes and cleaved embryos becoming blastocysts were calculated 

for all oocytes and cleaved embryos treated alike for each replicate. These percentages calculated 

for each replicate were analyzed by least-squares analysis of variance using the GLM procedure 

of SAS (SAS for Windows, Version 8, 1999–2001, Cary, NC, USA). Percentage data were 

analyzed without transformation and after performing arcsin transformation. Similar results were 

obtained for both variables; untransformed data are reported in this manuscript.  

In the first experiment, main effects included medium (mTCM-199 and mSOF), glucose 

concentration (5.6 and 20 mM) and oxygen environment (high and low). The mathematical 

model for the overall analysis included the main effects and interactions. To determine 

interactions between two main effects within one factor of a third main effect, the third main 

effect was fixed using the Sort procedure from SAS. For example, to determine if there was an 

interaction between medium and glucose under high or low oxygen, the Sort procedure was used 

to determine effects of medium, glucose and their interaction for each oxygen treatment 

separately. 

In the second experiment, main effects included temperature (38.5 and 41oC), glucose 

concentration (5.6 and 20 mM) and oxygen environment (high and low). The mathematical 

model for the overall analysis included the main effects and interactions, as mentioned above. 

The Sort procedure was also used as described above.  

All values reported are least-squares means ± SEM from non-transformed data. In the 

results section, it is noted whether values refer to the overall analysis or sorted analysis. 
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Results 

Comparison of mTCM-199 vs mSOF as Maturation Media in High and Low Oxygen 
Environments 

The proportion of oocytes that became blastocysts (Figure 5-1) was not affected by glucose 

concentration (P > 0.1) or medium (P > 0.1). However, there was a medium x oxygen interaction 

(P < 0.05). For oocytes matured in mTCM-199, development was greater in high oxygen than in 

low oxygen. For oocytes matured in mSOF, in contrast, the percentage of oocytes that became 

blastocysts was not affected by oxygen.  

Although the overall glucose x oxygen interaction was not significant (P > 0.1), sorted 

analysis for each glucose concentration revealed that development of oocytes to the blastocyst 

stage was higher in high oxygen compared to low oxygen when 5.6 mM glucose was used (41.4 

± 3.3 vs 25.5 ±3.3 %; P < 0.05) but not when 20 mM glucose was used (30.9 ± 2.8 vs 30.5 ± 

2.8%). Data were also analyzed separately for each oxygen concentration. For oocytes matured 

in high oxygen, those cultured in 5.6 mM glucose yielded a higher percentage of blastocysts than 

those cultured in 20 mM glucose (41.4 ± 3.0 vs 30.9 ± 3.0%; p = 0.06). The percentage of 

oocytes that became blastocysts was not affected by glucose concentration when oocytes were in 

low oxygen (25.5 ± 2.1 for 5.6 mM vs 30.5 ± 2.1% for 20 mM; P > 0.1).  

Effect of Oxygen and Glucose Concentration on Heat Shock Effects during Oocyte 
Maturation  

The mSOF was used for maturation in this experiment; based on the first experiment, there 

was no effect of oxygen on the proportion of oocytes becoming blastocysts for this medium. 

Overall, heat shock during maturation slightly but significantly (P < 0.05) reduced cleavage rate 

(69.1 ± 1.2 vs 65.6 ± 1.2% for 38.5 and 41oC, Figure 5-2B) and the percentage of oocytes 

becoming blastocysts (36.7 ± 1.1 vs 32.5 ± 1.1%; P < 0.05; Figure 5-2A). The percentage of 

cleaved embryos becoming blastocysts was also reduced by heat shock, but this effect was of a 
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lower magnitude and only approached significance (52.9 ± 1.5 vs 48.9 ± 1.5%; P < 0.1; Figure 5-

2C). Oocytes matured in the presence of 5.6 mM glucose had decreased development in low 

oxygen compared to high oxygen but development was not affected by oxygen when 20 mM 

glucose was used (oxygen x glucose for percentage of oocytes becoming blastocysts and 

percentage of cleaved embryos becoming blastocysts, P < 0.01). 

Although the overall effect of temperature was significant and there were no interactions 

with temperature, there was no numerical difference in cleavage or blastocyst development 

between 38.5 and 41oC when 20 mM glucose was used in high oxygen. To address this 

observation, further analysis was performed by determining how glucose concentration altered 

the magnitude of heat shock effects at each oxygen concentration. In high oxygen, the percentage 

of oocytes that cleaved was not affected by heat shock when oocytes were matured in either 5.6 

or 20 mM glucose (temperature, P > 0.1; Figure 5-2B). The percentage of oocytes becoming 

blastocysts was reduced when oocytes were matured in 5.6 mM glucose, but not when oocytes 

were matured in 20 mM glucose (temperature x glucose, P < 0.07; Figure 5-2A). Results were 

similar for percentage of cleaved embryos becoming blastocysts (temperature x glucose, P < 

0.05; Figure 5-2C). For oocytes matured in low oxygen, heat shock tended to decrease the 

percentage that cleaved (P = 0.07; Figure 5-2B) and decreased the percentage of oocytes that 

developed to the blastocyst stage (P < 0.05; Figure 5-2A). However, there were no significant 

temperature x glucose interactions for either of these variables, i.e., the effect of heat shock was 

independent of glucose concentration. The proportion of cleaved embryos becoming blastocysts 

was not affected by temperature or temperature x glucose.  

Discussion 

Based on the first experiment, we concluded that effectiveness of culture systems for 

supporting oocyte maturation depended upon interactions between medium, oxygen tension and 



 

107 

glucose concentration. In general, blastocyst yield was reduced if maturation was performed 

under a low oxygen environment, with the only exception being maturation in mSOF in 20 mM 

glucose. This effect of oxygen and its modulation by glucose concentration for mSOF was 

apparent in both experiments. The superiority of a high oxygen environment is likely related to 

oxygen availability to the oocyte and cumulus cells. When embryoid bodies were cultured under 

high oxygen, cells from the center of the bodies had about 30% less available oxygen then cells 

in the periphery (Gassmann et al. 1996). Therefore, when the number of cells is high and oxygen 

is limiting, i.e., as under the low oxygen atmosphere used here, it is likely that cumulus cells in 

close contact with the oocyte and the oocyte itself experience a deficit in oxygen availability. 

Hypoxia results in uncoupling of electron transfer and oxidative phosphorylation in the 

mitochondria, accumulation of pyruvate, and a shift to glycolysis (Czyzyk-Krzeska 1997; 

Wenger and Gassmann 1997). Because glycolysis is less efficient than oxidative phosphorylation 

for ATP production, it is likely that ATP production by the oocyte becomes insufficient in 

oxygen-restricted environments. Indeed, oocyte ATP content was reduced in oocytes matured in 

5% oxygen as compared to those matured in atmospheric oxygen (Hashimoto et al. 2000a).  

Under low oxygen conditions, raising glucose concentration from 5.6 mM to 20 mM 

increased the proportion of oocytes that became blastocysts when the maturation medium was 

mSOF. Indeed, there were no deleterious effects of maturing oocytes under low oxygen when the 

maturation medium was mSOF containing 20 mM glucose. It was also reported that increasing 

glucose concentration in an SOF-based maturation medium from 1.5 mM to 20 mM increased 

ATP content and the proportion of oocytes that reached metaphase II (Hashimoto et al. 2000a). 

The addition of glucose at 20 mM did not reverse the detrimental effects of maturation in low 

oxygen when mTCM-199 was the maturation medium. It was unclear why raising glucose 
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concentration did not improve oocyte competence for development for oocytes matured with 

mTCM-199, but it may be related to the redox status of the oocyte. Under high oxygen 

conditions, raising glucose concentration in maturation medium can increase production of ROS 

and decrease oocyte GSH content (Hashimoto et al. 2000b). Indeed, under high oxygen 

conditions, high glucose concentrations were detrimental to oocyte maturation as determined by 

subsequent blastocyst yield in the present study. Perhaps production of ROS was higher for 

oocytes matured with mTCM-199 than for oocytes matured with mSOF; therefore, beneficial 

effects of raising glucose concentrations under low oxygen on ATP synthesis were counteracted 

by effects on free radical metabolism.  

Effects of oxygen and glucose concentrations on the magnitude of effects of heat shock 

were tested using mSOF, as oxygen effects were less when compared to oxygen effect using 

mTCM-199. Using this experimental model, previous observations that heat shock during 

maturation reduces oocyte competence for fertilization and development (Payton et al. 2004; 

Roth and Hansen 2004b; Roth and Hansen 2004a; Edwards et al. 2005; Ju et al. 2005) were 

confirmed. In particular, heat shock reduced the proportion of oocytes that cleaved and the 

proportion of cleaved embryos that became blastocysts. Furthermore, the effects of heat shock 

did not depend upon oxygen concentration, and glucose concentration reduced effects of heat 

shock only in a high oxygen environment.  

That heat shock reduced oocyte competence under conditions of high or low oxygen 

indicated that damage to the cultured oocyte by heat shock does not require a high-oxygen 

environment. In contrast, in preimplantation embryos, the effects of heat shock are exacerbated 

when culture is in high oxygen (Chapter 3). One explanation for this difference is that the cell 

density is greater in cultures of maturing oocytes than for cultures of preimplantation embryos 
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(because of the presence of cumulus cells in the former); this increased density may make the 

generation of ROS by heat shock less dependent upon oxygen concentration.  

One surprising observation was that effects of heat shock on oocyte competence were 

eliminated when oocytes matured in high oxygen (but not low oxygen) were cultured with 20 

mM glucose. One should be careful in ascribing a thermoprotective effect to high glucose, 

however, because culture in 20 mM glucose tended to reduce oocyte competence for blastocyst 

development in high oxygen. Perhaps the oocyte populations being damaged by heat shock were 

the same ones damaged by elevated glucose concentrations so that no additive effects were seen 

when both stresses were combined.  

Except for oocytes matured using 20 mM glucose in high oxygen, where no reduction was 

observed, the magnitude of reduction in blastocyst development caused by heat shock (expressed 

as a percentage of development at 38.5oC) ranged from 14 to 17%. This magnitude of heat shock 

effect is less than for many studies in which a similar heat shock was applied during 

development. We hypothesized that the magnitude of heat shock effects during maturation on 

oocyte competence depends upon the suitability of the culture system for supporting 

development. In particular, effects of heat shock were reduced in systems where the proportion 

of oocytes becoming blastocysts was high. Thus, in the present study, the proportion of oocytes 

that developed to the blastocyst stage at 38.5oC was high, ranging from 38 to 42% for all 

treatments but one (5.6 mM glucose in low oxygen) and the magnitude of effects of heat shock 

were low. Similarly, Edwards and Hansen (1997), using a similar exposure to heat shock, found 

that 46% of non heat-shocked oocytes became blastocysts and the reduction in development 

caused by heat shock was 11%. In studies in which the percentage of oocytes that became 

blastocysts in the absence of heat shock ranged from 20 to 30%, the reduction in development 
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caused by heat shock was about 40 to 65% (Payton et al. 2004; Roth and Hansen 2004b; 

Edwards et al. 2005). Other possible reasons for differences between studies include differences 

in season, breed of ovary donors, and specific modifications of the culture medium. 

Based on the present study, heat shock can damage oocyte competence for development to 

the blastocyst stage after insemination under an oxygen tension similar to that in the follicle and 

oviduct. Whether such damage occurs in vivo may depend on other factors that affect embryonic 

capacity for development. In particular, heat stress is more likely to compromise the process of 

oocyte maturation when either 1) the oocyte was exposed before maturation to conditions that 

reduce oocyte potential for development (including heat stress and other factors such as low 

nutrition (Rocha et al. 1998; Snijders et al. 2000; Zeron et al. 2001; Al-Katanani et al. 2002; 

Sartori et al. 2002b), or 2) the subsequent embryo is exposed to conditions after fertilization that 

limit embryonic development.  
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Figure 5-1. Least-squares means (± SEM) percentage of bovine oocytes developing to the 
blastocyst stage on Day 8 after fertilization, as determined by maturation medium, 
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glucose concentration and oxygen environment. Oocytes were matured for ~22 hours 
in modified TCM-199 or modified SOF in the presence of 5.6 or 20 mM glucose in 
either high (~21%) or low (5%) oxygen environment. The percentage of oocytes 
becoming blastocysts was affected by the medium x oxygen interaction (P < 0.05) 
because oxygen was a greater determinant of development to the blastocyst stage for 
mTCM-199.  Also, blastocyst development was higher in high oxygen compared to 
low oxygen when 5.6 mM glucose was used (P < 0.05), but not when 20 mM glucose 
was used (P > 0.10). For oocytes matured in high oxygen, those cultured in 5.6 mM 
glucose yielded a higher percentage of blastocysts than those cultured in 20 mM 
glucose for oocytes in high oxygen (P = 0.06) but not for oocytes in low oxygen.  
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Figure 5-2. Least-squares means (± SEM) percentage of oocytes developing to the blastocyst 
stage on Day 8 after fertilization, percentage oocytes cleaving and percentage of 
cleaved embryos becoming blastocysts, as determined by incubation temperature, 
glucose concentration and oxygen environment. Oocytes were heat shocked or not for 
the first 12 hours of maturation in modified SOF in the presence of 5.6 or 20 mM 
glucose in either high or low oxygen environment. A) Overall, heat shock during 
maturation reduced (P < 0.05) the percentage of oocytes becoming blastocysts and B) 
cleavage rate. C) Heat shock also tended (P < 0.1) to reduce the percentage of cleaved 
embryos becoming blastocysts. A) Oocytes matured in the presence of 5.6 mM 
glucose had decreased development in low oxygen compared to high oxygen, but 
development was not affected by oxygen when 20 mM glucose was used [oxygen x 
glucose for percentage of oocytes becoming blastocysts and C) percentage of cleaved 
embryos becoming blastocysts (P < 0.01). Based on separate analyses for oocytes in 
high oxygen, A) the percentage of oocytes that cleaved was not affected by heat 
shock in either 5.6 or 20 mM glucose and B) the percentage of oocytes becoming 
blastocysts was reduced when oocytes were matured in 5.6 mM glucose but not when 
oocytes were matured in 20 mM glucose (temperature x glucose, P < 0.07). C) A 
similar result was seen for percentage of cleaved embryos becoming blastocysts 
(temperature x glucose, P < 0.05). B) For oocytes matured in low oxygen, heat shock 
tended to decrease (P = 0.07) the percentage that cleaved, decreased (P = 0.05) the 
percentage of oocytes that developed to the blastocyst stage, C) and did not 
significantly affect the percentage of cleaved embryos becoming blastocysts. For 
oocytes in low oxygen, there were no significant temperature x glucose interactions.
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CHAPTER 6 
EFFECT OF HEAT STRESS ON OXYGEN AND STEROID CONCENTRATIONS IN 

PREOVULATORY FOLLICLES OF LACTATING COWS EXPOSED TO ACUTE HEAT 
STRESS 

Introduction 

Fertility in lactating dairy cows decreases during hot months of the year (Elliott and Ulberg 

1971; Gwazdauskas et al. 1973; Badinga et al. 1985; Cavestany et al. 1985; Wolfenson et al. 

1988; Rocha et al. 1998; Al-Katanani et al. 1999; Morton et al. 2007) and after experimentally-

induced heat stress (Putney et al. 1988a; Putney et al. 1989; Ealy et al. 1993). One cause for 

reduced fertility during heat stress is damage to the oocyte. For example, competence of oocytes 

to be fertilized and/or support development to the blastocyst stage when subjected to in vitro 

fertilization is reduced during the summer in warm regions of the world (Rocha et al. 1998; Roth 

et al. 2001a; Zeron et al. 2001; Al-Katanani et al. 2002; Roth et al. 2002). In vivo, fertilization 

rate after artificial insemination has been reported to be lower in lactating cows during the 

summer than winter (Sartori et al., 2002) and experimental application of heat stress to 

superovulated cows during the preovulatory period resulted in formation of embryos with 

reduced development (Putney et al. 1989). 

One mechanism by which heat stress can result in oocyte damage involves disruption of 

oocyte function by elevated temperature. Indeed, culture of oocytes during maturation at elevated 

temperatures can reduce subsequent cleavage rate and blastocyst development rates following in 

vitro fertilization (Edwards & Hansen 1996, Payton et al. 2004, Roth & Hansen 2004a, Edwards 

et al. 2005, Ju et al. 2005). In addition, heat stress can compromise follicular steroid synthesis in 

vivo (Wolfenson et al. 1997; Roth et al. 2001b) and exposure of cultured follicular cells to 

elevated temperatures can reduce production of estradiol (Wolfenson et al. 1997; Bridges et al. 

2005) and androstenedione and increase production of progesterone (Bridges et al. 2005).  
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It is also possible that alterations in follicular oxygen concentrations by heat stress could 

compromise oocyte function during the preovulatory period. One of the physiological responses 

to increased body temperature is the redistribution of blood circulation to the skin (Choshniak et 

al. 1982). In lactating Holstein cows, evaporative heat loss from the skin has been estimated to 

represent approximately 85% of the total heat loss when ambient temperatures rise above 30oC 

(Maia et al. 2005b). Increase in respiratory cycles is also a response to heat stress (Berman et al. 

1985; Srikandakumar and Johnson 2004; Valtorta and Gallardo 2004; Maia et al. 2005a) and 

may result in redistribution of blood flow to muscles involved in respiratory activity as occurs 

for other species (Wolfenson et al. 1981; Bell et al. 1983). Increased blood flow to the periphery 

results in reduced blood flow to the internal organs, including the reproductive tract. For 

example, blood flow to ovaries, cervix and oviduct from rabbits was decreased by 20 to 30% 

during heat stress while vulval blood flow increased 40% (Lublin and Wolfenson 1996). In 

another example, the blood flow to the uterus of ovariectomized cows treated with estradiol-17β 

was reduced by heat stress (Roman-Ponce et al. 1978b; Roman-Ponce et al. 1978a).  

Studies from the human highlight the importance of follicular blood flow and oxygen 

content for oocyte function. In particular, increased follicular vascularity was correlated with 

increased pregnancy rate, perifollicular blood flow was positively correlated with follicular 

oxygen content (Van Blerkom et al., 1997; Huey et al., 1999) and follicular oxygen 

concentration was directly correlated with oocyte quality as determined by chromosomal 

structure, fertilization and subsequent development in vitro (Van Blerkom et al. 1997). Oocytes 

derived from follicles containing ≤1.5% oxygen had almost half the capacity of reaching 6-8 cell 

stage following insemination when compared to oocytes from follicles with 3 to 5% oxygen 

(Van Blerkom et al. 1997).  
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The objective of the present study was to test the hypothesis that acute heat stress causes a 

reduction in oxygen concentration in the follicular fluid of the preovulatory follicle. Since heat 

stress has also been reported to affect follicular steroid synthesis (Wolfenson et al. 1997; Roth et 

al. 2001b), an additional objective was to determine acute effects of heat stress on follicular 

concentrations of estradiol-17β and progesterone.  

Materials and Methods 

The experiment was conducted in September 2006, at the University of Florida Dairy 

Research Unit located near Gainesville, FL (29o 46’ 45.46’’ N, 82o 24’ 58.53’’ W). The protocol 

used in the experiment was approved by the University of Florida Institutional Animal Care and 

Use Committee.  

Cows 

Lactating Holstein cows (n = 31) were used in a total of two replicates initiated one week 

apart. Cows were fed a total mixed ration containing corn silage, corn grain and legume hay as 

the main ingredients and with 0.75 Mcal of NEL/kg and 17.7% crude protein on a dry matter 

basis. Fresh water was available for both groups ad libitum. Cows were treated with Posilac® 

(Monsanto, St. Louis, MO, USA) according to manufacturer’s directions and were milked two 

times per day. Except for the day of follicular aspiration, cows were housed in free-stall barns 

containing fans and sprinklers.  

Estrous Synchronization and Identification of Cows with Preovulatory Follicles 

For each replicate, estrous cycles were synchronized by 100 μg (i.m.) of GnRH (2 mL 

Cystorelin®; Merial (Duluth, GA, USA) on Day -9 and 25 mg (i.m.) PGF2α (5 mL Lutalyse; 

Pfizer, New York, NY, USA) on Day -2. After being milked in the morning of Day 0 (the 

putative day of estrus), cows were subjected to transrectal ultrasonography using an Aloka 500 

ultrasound unit equipped with a 5-MHz linear-array probe (Aloka, Wallingford, CT, USA) to 
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verify the presence of a dominant follicle and absence of a corpus luteum. Follicle diameter were 

measured and recorded at this time. Of the 31 cows synchronized, 3 cows did not meet the 

ovarian criteria listed above and were excluded from the experiment. An additional 6 were not 

used in any of the analyses because follicular fluid was not retrieved as a result of accidental 

follicle rupture during the aspiration. Thus, 22 cows were used in the experiment.  

Heat Stress Treatments on Day 0 

Cows with a pre-ovulatory follicle on Day 0 were blocked by days in milk [days in milk < 

75 (range = 68 to 75) vs days in milk > 80 (range = 118 to 353)] and randomly assigned within 

block to control or heat stress treatments. Days in milk were 127.3 ± 22.9 days for control cows 

and 180.1 ± 37.4 days for heat-stressed cows. Beginning at 1030 hours of Day 0, cows were 

moved to one of two adjacent 10 x 5 m concrete-floored pens. Both pens were covered with 

shade cloth at a height of 3.5 m. The pen housing the control cows also contained sprinklers 

mounted below the shade cloth that operated continuously. In addition, each cow was soaked 

with a hose every 15 minutes for approximately 40 seconds. Heat-stressed cows were maintained 

in a similar pen except that sprinklers were turned off and cows were not soaked with a hose.  

All cows were fed as a group (within treatment groups) twice during the experimental day 

(Day 0) at 1030 and 1500 hours. Rectal temperature was recorded at one hour intervals until 

follicular aspiration and immediately before follicular aspiration. Dry bulb temperature and 

relative humidity were recorded hourly at a height of 2.5 m.  

Sampling of Follicular Fluid  

Beginning at ~4 hours after initiation of heat stress treatments (1430 hours), follicular fluid 

was sampled using transvaginal follicular aspiration. Control and heat-stressed cows were 

sampled in alternating order. The entire sampling process required 2 hours so that follicular fluid 
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from the last cow sampled was obtained 6 hours (1630 hours) after initiation of heat stress (1030 

hours).  

Follicular aspiration was performed by a modification of standard follicular aspiration for 

ovum pick-up procedure (Bilby et al. 2006). Cows were restrained and given caudal epidural 

anesthesia via injection of 5 mL of 2% (w/v) lidocaine using an 18-gauge, 1.5 inch needle. 

Follicular fluid samples were collected using an Aloka 500 ultrasound device equipped with a 

needle guide and connected to a 5-MHz vaginal sector transducer probe (Figure 6-1). The 20-

gauge 1½ inch needle at the end of the guide was connected to a 5 mL syringe via a 70-cm long 

polyetherketone tubing (outer diameter and inner diameter of 0.16 and 0.05 cm, respectively) 

with Teflon compression fittings in a gas tight system. After piercing the follicle with the needle, 

follicular fluid was aspirated manually into the 5 mL syringe. 

Measurement of Follicular Oxygen Concentration 

Oxygen content was measured within 1 to 2 minutes of collection of follicular fluid. 

Oxygen was measured using a fluorometric fiber-optic oxygen sensor system (FOXY system; 

Ocean Optics, Inc., Dunedin, FL, USA) that utilized a USB-2000 linear diode-array fluorometer, 

LS-450 blue LED excitation source, and 300 µm optical fiber probe in a 0.16 cm outer diameter 

stainless steel jacket. The probe was coated with a ruthenium red compound that, upon 

excitation, emits fluorescence. The intensity is inversely proportional to the amount of oxygen 

present in the sample due to quenching effects of oxygen towards the fluorescent compound. 

The fluorometric fiber-optic oxygen sensor system was connected to a laptop equipped 

with SpectraSuite spectroscopy software. The probe tip was mounted in a low-volume (0.2 mL), 

flow-through chamber into which the fluid was injected via a syringe for measurement of 

dissolved oxygen. The oxygen sensor was kept at ambient temperature. An opaque, black 
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silicone coating on the optical fiber allowed a two-point calibration with gases (air and 100% 

N2).  

Upon collection, follicular fluid samples were injected into the flow-through chamber and 

the dissolved oxygen reading was monitored until it was stable (typically < 2 minutes). An 

additional 0.1 mL fluid was then injected to confirm that the reading was stable. The fluid was 

then withdrawn, placed in ice until storage at -20oC (within 2 to 4 hours). The chamber was 

flushed with distilled water and the calibration points checked between samples.  

Measurement of Plasma Progesterone Concentrations 

A blood sample was collected from each cow immediately before follicular aspiration by 

coccygeal venipuncture into evacuated heparinized 10-mL tubes (Becton Dickinson, Franklin 

Lakes, NJ, USA). After collection, blood samples were placed in ice until further processing at 

the laboratory (within approximately 2 to 4 hours). Blood samples were centrifuged at 2,000 x g 

for 20 minutes at 4°C. Plasma was separated and stored at – 20°C until assayed for progesterone 

concentration. Progesterone concentrations were determined by radioimmunoassay (RIA) using 

the Coat-a-Count® progesterone kit (Diagnostic Products Corp., Los Angeles, CA, USA). The 

intraassay sensitivity of the assay was 2.06 ng/mL and coefficient of variation was 7%. 

Determination of Follicular Fluid Concentrations of Steroids 

Follicular fluid concentrations of estradiol-17β were determined by radioimmunoassay as 

described previously (Spicer and Enright 1991). The intraassay coefficient of variation was 13% 

and the assay sensitivity defined as 95% of total binding was 0.05 ng/mL. Follicular fluid 

concentrations of progesterone were determined by RIA as described previously (Spicer and 

Enright 1991); the intraassay coefficient of variation was 10% and assay sensitivity, defined as 

90% of total binding, was 1.7 ng/mL.  
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Determination of Follicle Class Based on Follicular Steroid Concentrations 

Inspection of follicular concentrations of steroids revealed that cows could be classified 

into two groups. The more numerous group of cows (16 of 22 cows examined) had a follicle with 

a high estradiol-17β concentration (> 319 ng/mL) and low progesterone concentration (< 243 

ng/mL) (Ireland and Roche 1983). These cows were considered to have a pre-ovulatory follicle. 

Another group of cows (6 of 22 cows) had a follicle with a low estradiol-17β concentration (< 

102 ng/mL) and high progesterone concentration (>273 ng/ml). Cows in this group were 

considered characteristic of cows that had either experienced the LH surge or were cystic. For 

statistical analysis, cows were divided in two follicle class groups (high estradiol-17β vs low 

estradiol-17β) according to the steroid concentration limits described above. The days in milk at 

the time of follicular aspiration for cows in the high estradiol-17β class were 81.8 ± 35.8 and 

172.8 ± 27.6 days for control and heat stress groups, respectively while days in milk for cows in 

the low estradiol-17β class were 175.7 ± 43.2 and 184 ± 61.1 for control and heat stress groups, 

respectively. 

Statistical Analysis 

Data on diameter of the largest follicle on Day 0, rectal temperature at the time of follicular 

aspiration, and follicular concentrations of estradiol-17β, progesterone and oxygen were 

analyzed by least-squares analysis of variance using the GLM procedure of SAS (SAS for 

Windows, Version 8, 1999–2001, Cary, NC, USA). Effects included replicate, treatment (control 

vs heat stress), follicle class (high vs low estradiol-17β) and treatment x follicle class interaction. 

In addition, subsets of cows in the high and low estradiol-17β classes were also analyzed. Data 

for estradiol-17β and progesterone exhibited heterogeneity of variance. Data were therefore 

subjected to log transformation before analysis. Probability values are based on analysis of the 

transformed data and results are presented as means ± SEM calculated for each subgroup.  
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Data on rectal temperature taken at hourly intervals at Day 0 were also analyzed by least-

squares analysis of variance as described above except that time and interactions with time were 

included in the model. Cow(replicate x treatment) x time was used as the error for testing 

significance of the time effect.  

Analyses of the relationship between follicle diameter and oxygen concentration were 

performed using the GLM procedure of SAS with treatment as a class variable, linear, quadratic 

and cubic effects of follicle diameter, and with interactions of treatment and follicle diameter. 

Based on these analyses, the final statistical analysis was performed with the linear effect of 

follicle diameter as the only term in the model. 

Results 

Characteristics of Cows at Day 0 before Initiation of Heat Stress Treatment 

There was no difference in follicular diameter between control and heat-stressed cows 

(15.9 ± 1.2 and 16.0 ± 1.4 mm, respectively; P > 0.1). One heat-stressed cow from the high 

estradiol-17β follicle class had a plasma progesterone concentration of 1.5 ng/mL. All other 

cows in the analysis had a plasma progesterone concentration lower than 1 ng/mL.  

Characteristics of Heat Stress Treatment: Dry Bulb Temperature, Relative Humidity and 
Rectal Temperature 

Characteristics of the environment for control and heat-stressed cows and of the resultant 

rectal temperatures are presented in Figure 6-2. Dry bulb temperature increased throughout the 

day and relative humidity decreased during the day for both control and heat stress pens (Figure 

6-2A). Temperature was higher and relative humidity was lower at all times for the heat stress 

pen compared to control pen. The dry-bulb temperatures and relative humidities were similar for 

both replictaes and are reported as averages from both replicates. Rectal temperatures were lower 

for control cows than for heat-stressed cows. This was true whether examining rectal temperature 
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at hourly intervals (Figure 6-2B; temperature x time, P < 0.01) or rectal temperature at the time 

of follicular aspiration (Figure 6-2C, P < 0.01). There was no significant interaction between 

treatment and follicle class on rectal temperature (P > 0.1).  

Follicular Estradiol and Progesterone Concentrations 

Results are shown in Table 6-1. As expected, estradiol-17β concentration was higher in the 

high estradiol-17β group as compared to cows in the low estradiol-17β group (P < 0.01). In 

addition, progesterone concentration was lower in the high estradiol-17β group (P < 0.01). There 

was no effect of heat stress on concentration of estradiol-17β or progesterone. This was true 

whether considering all cows or only those cows within the high estradiol-17β class. There was 

also no follicle class x treatment interaction (P > 0.1).   

Follicular Oxygen Content 

Results are presented in Table 1. Follicular oxygen concentration was affected by the 

follicle class x treatment interaction (P < 0.01). There was no effect of heat stress treatment on 

follicular oxygen concentration among cows in the high estradiol-17β class but oxygen content 

was higher for control cows than for heat-stressed cows in the low estradiol-17β class. When the 

subset of cows with high estradiol-17β was analyzed separately, there was also no effect of heat 

stress on follicular oxygen concentration (P > 0.1).  

When all cows were analyzed, there was no relationship between follicular diameter and 

oxygen concentration. Among the cows in the high estradiol-17β class, however, oxygen 

concentration tended to be inversely correlated to follicular diameter (Figure 6-3; P = 0.09) (y = -

0.20x + 10.24; r2 = 0.19).  

Discussion 

The objective of the present study was to determine the effect of acute heat stress on 

follicular concentrations of oxygen, estradiol-17β and progesterone in the preovulatory follicle of 



 

122 

the lactating dairy cow. The main hypothesis was that the reduction in blood flow to the ovary 

coincident with heat stress would reduce oxygen delivery to the follicle and result in lower 

oxygen concentration in the follicle. In contrast to this expected result, there was no effect of 

heat stress on follicular oxygen concentration in cows having follicular steroid profiles 

characteristic of the dominant preovulatory follicle. It is believed that the degree of heat stress 

applied was of sufficient magnitude to cause a reduction in blood flow. The increase in average 

rectal temperature of ~ 1.0 oC caused by heat stress is similar to the degree of hyperthermia that 

reduced blood flow to the reproductive tract in the rabbit and laying hen (Wolfenson et al. 1981; 

Lublin and Wolfenson 1996). Thus, there are likely other reasons for the lack of effect of heat 

stress on follicular oxygen concentration among cows with pre-ovulatory follicles.  

Perhaps, the reduction in blood flow to the ovary caused by heat stress was insufficient to 

cause a reduction in follicular oxygen concentration. Moreover, there may have been adjustments 

in the microvasculature of the follicle to ensure adequate oxygen delivery. The potential for 

regulation of blood flow to the follicle by oxygen is illustrated by studies showing that 

concentrations of oxygen in human follicles are negatively correlated with presence of the 

angiogenic factor, interleukin-8 (Yoshino et al. 2003) and that hypoxia stimulated vascular 

endothelial growth factor production in porcine cumulus cells (Basini et al. 2004). An alternative 

explanation for the lack of effect of heat stress is that the oxygen requirements of the follicle may 

be low enough that an acute reduction in flood flow would not lead to a measurable decline in 

follicular oxygen concentration during a heat stress period limited to several hours. Bovine 

cumulus cells use glycolysis extensively and it has been estimated that cumulus cells do not have 

a major impact on follicular oxygen content (Clark et al. 2006). Perhaps effects of heat stress on 

follicular metabolism further reduced oxygen requirements of the follicle.  



 

123 

It is possible that heat stress of a longer duration (days or longer) could compromise 

follicular oxygen concentration. The decision was made to focus on acute effects in the current 

experiment because of experimental difficulties with a chronic heat stress model, caused by 

possible confounding effects of heat stress on follicular growth (Badinga et al. 1993; Wolfenson 

et al. 1995; Trout et al. 1998; Wilson et al. 1998). It is important to note that acute heat stress 

during the preovulatory period (14 hours) can compromise oocyte competence (Putney et al. 

1989) and that cows acutely cooled (12 hours) during summer had higher secretion of LH and 

FSH after administration of GnRH (Gilad et al. 1993). 

Intriguingly, heat stress did reduce follicular oxygen concentration in the low estradiol 17-

β class. In these cows, having a low follicular estradiol-17β concentration and a high follicular 

progesterone concentration, the oxygen concentration for heat-stressed cows was 4.5 to 4.6% vs 

6.5 to 8.2% for control cows. Caution must be observed when interpreting these data since, 

despite the fact that the follicle class x treatment interaction was significant, there were only six 

cows in the low estradiol-17β class. It is possible, however, that local mechanisms that allow 

maintenance of follicular oxygen concentrations in preovulatory follicles (for example regulation 

of local blood flow) are lost in follicles present for cows in the low estradiol-17β group. In fact, 

follicles from the first follicular wave with estradiol-17β concentration higher than progesterone 

were shown to express more endothelial nitric oxide synthase (eNOS) and vascular endothelial 

growth factor (VEGF) proteins compared to follicles with estradiol-17β lower than progesterone 

(Grazul-Bilska et al. 2007). eNOS and VEGF are molecules responsible for increasing blood 

flow through vasodilation and angiogenesis, respectively (Kofidis et al. 2002; Mattson and 

Meister 2005; Partovian et al. 2005; Trousdale et al. 2007).  
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The nature of the follicles in the low estradiol-17β group is unclear. Some may be cystic 

follicles as there are small follicular cysts characterized by lack of granulosa cells, high amounts 

of progesterone and little estradiol-17β in the follicular fluid (Cairoli et al. 2002; Isobe 2007). 

Another possibility is that the LH surge and follicular luteinization had been initiated in some 

cows in the low estradiol-17β group since the LH surge is accompanied by a reduction in 

follicular estradiol-17β synthesis and an increase in progesterone synthesis (Dieleman et al. 

1983; Fortune and Hansel 1985; Komar et al. 2001). This possibility is less likely due to the high 

concentrations of progesterone in the follicular fluid of the low estradiol-17β cows. 

Heat stress did not affect follicular steroid concentrations. Although plasma estradiol-17β 

has been shown to be decreased by heat stress in some experiments (Gwazdauskas et al. 1981; 

Wilson et al. 1998), Rosenberg et al. (1982) found no effect of heat stress. Follicular estradiol-

17β concentration was reduced in chronically heat-stressed cows (Wolfenson et al. 1997; Roth et 

al. 2001b) but not in acutely heat-stressed cows (Guzeloglu et al. 2001). The absence of effect in 

steroid concentration in the present study could be due to the fact that differences in steroid 

output during the experimental period were either nil or were small and not sufficient to cause a 

change in the pool of steroids in the follicle within the experimental period. Any effect of a 

reduction in steroid output on follicular fluid concentrations would be reduced if blood flow to 

the ovary was decreased.  

To our knowledge, this is the first report describing oxygen concentrations of the bovine 

follicle in situ. The values obtained, with a mean of 6.8% and a range of 3.8 to 9.2%, are similar 

to results for follicular oxygen concentration in other species (Knudsen et al. 1978; Van Blerkom 

et al. 1997). In cows in the high estradiol-17β follicle class, having a prototypical pre-ovulatory 

follicle (high estradiol-17β concentration and low progesterone concentration), the follicular 
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oxygen concentration tended to decrease as follicle diameter increased. This is not surprising 

because the complex matrix of follicular vasculature is confined to the theca layer (Macchiarelli 

et al. 2006) and becomes more distant from the center of the follicle as the follicle expands in 

diameter. An increase in follicular diameter has also been shown to be accompanied by decrease 

in follicular oxygen concentration in humans (Fischer et al. 1992) and pigs (Basini et al., 2004).  

The oocyte is surrounded by fluid containing oxygen concentrations much lower than 

atmospheric oxygen concentration used in most in vitro maturation systems (Pinyopummintr and 

Bavister 1995; de Matos et al. 1997; Hashimoto et al. 1998; Roth and Hansen 2004a). Indeed, 

under many conditions, oocyte maturation in vitro is more effective under atmospheric oxygen 

than under 5% oxygen (Pinyopummintr and Bavister 1995; Hashimoto et al. 2000a; Park et al. 

2005). The greater requirement for a high oxygen concentration in vitro may reflect the static 

nature of the in vitro system.  

In summary, acute heat stress did not cause a reduction in concentrations of oxygen, 

estradiol-17β or progesterone in fluid from the preovulatory follicle. Therefore, acute reductions 

in blood flow are unlikely to be involved in the oocyte damage caused by heat stress (Rocha et 

al. 1998; Roth et al. 2001a; Al-Katanani et al. 2002; Sartori et al. 2002b). 
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Figure 6-1. Schematic representation of the procedure for follicular fluid aspiration and oxygen 
measurement. Follicular fluid samples were collected using an ultrasound device 
equipped with a needle guide and connected to a vaginal sector transducer probe. The 
needle was connected to 5 mL syringe via 70 cm of tubing with Teflon compression 
fittings in a gas tight system. Upon collection of fluid by aspiration of the punctured 
follicle, fluid samples were immediately injected into a flow-through chamber 
connected to an oxygen measurement probe that interfaced with a computer. The 
reading was monitored in the computer until it was stable (typically < 2 minutes). An 
additional 0.1 mL fluid was then injected to confirm that the reading was stable. The 
chamber was flushed with distilled water and the calibration points checked between 
samples. Note that elements in the illustration are not drawn to scale. 
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Figure 6-2. Effect of heat stress on dry bulb temperature, relative humidity and rectal 
temperature on the day of follicular aspiration.  A) Averages of two replicates for dry 
bulb temperatures (solid line) and relative humidity (open lines) in pens for control 
(solid symbols) and heat-stressed cows (open symbols) recorded hourly beginning at 
the time cows were allocated to the pens (10:30 AM). B) Rectal temperatures of 
control (solid symbols) and heat-stressed cows (open symbols). Rectal temperatures 
were recorded until cows had been aspirated and therefore the number of observations 
per data point ranges from 3 -12. Data are least-squares means ± SEM (treatment; P < 
0.05; treatment x time, P < 0.01). C) Rectal temperatures of control (n = 10) and heat-
stressed cows (n = 12) at the time of follicular fluid aspiration (between 14:30 and 
14:30). Data are least-squares means ± SEM (treatment; P < 0.05).  
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Figure 6-3. Relationship between follicular fluid oxygen concentration and follicle diameter. The 

line represents the predicted regression equation and circles represent values for 
individual cows from control (solid circles) and heat stress (open circles) groups. The 
regression equation describing the relationship between oxygen concentration and 
follicle diameter was as follows: y = - 0.20x + 10.24 (r2 = 0.19, P < 0.05).  
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Table 6-1. Effects of heat stress and type of follicle [high estradiol-17β (> 319 ng/mL) vs low 
estradiol-17β (< 102 ng/mL)] on follicular concentrations of estradiol-17β, 
progesterone and oxygen. 

a Data are means ± SEM and, in parentheses, the range of values. b Data are least-squares means 

± SEM and, in parentheses, the range of values. c Follicle class x treatment; P < 0.01. 

 

 

 

 

 

 

 

 

 

 

Follicle class Treatment Estradiol-17β 
(ng/mL)a 

Progesterone 
(ng/mL)a 

Follicular oxygen 
concentration (%)bc 

Control 
(n = 6) 

 
1264.5 ± 84.3 
(562 to 1852) 

 

142.6 ± 12.7 
(62 to 243) 

6.9 ± 0.4 
(4.9 to 8.5) 

High estradiol-17β 

Heat stress 
(n = 10) 

 
1707.9 ± 77.6 
(319 to 2899) 

 

103.7 ± 4.5 
(43 to 194) 

7.3 ± 0.3 
(3.9 to 9.2) 

Control 
(n = 4) 

 
35.0 ± 4.0 
(0.1 to 69) 

 

1625.0 ± 423.5 
(273 to 4102) 

7.6 ± 0.5 
(6.5 to 8.2) 

Low estradiol-17β 

Heat stress 
(n = 2) 

 
51.0 ± 35.7 

(0.21 to 101) 
 

714.9 ± 55.2 
(636 to 793) 

4.6 ± 0.7 
(4.5 to 4.6) 
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CHAPTER 7 
GENERAL DISCUSSION 

Experiments for this thesis focused on extending the current understanding of the 

mechanisms involved in the effects of heat shock on oocyte competence and embryo 

development and apoptosis. The importance of the subject is underscored by the severe reduction 

in fertility of lactating dairy cows due to heat stress globally (Rocha et al. 1998; Al-Katanani et 

al. 1999; Rutledge et al. 1999; Zeron et al. 2001). From the results presented here, we 

demonstrated that the effects of heat shock in the embryo are modulated by oxygen 

concentrations and involve oxidative stress (Chapter 3). A role for oxidative stress in effects of 

heat shock was based on the fact that heat shock induced apoptosis and reduced embryo 

development in culture under high oxygen but not under low oxygen. In addition, the use of 

antioxidant DTT blocked heat shock-induced apoptosis and reduced effects of heat shock in 

embryo development in a stage-specific manner. In the oocyte the effects of heat shock did not 

depend upon oxygen concentration. Oocytes had reduced competence to reach the blastocyst 

stage under both high and low oxygen environment (Chapter 5). It was also demonstrated for the 

first time in the preimplantation embryo the presence of a responsive signaling mechanism 

involving the sphingomyelin pathway (Chapter 4). The existence of this mechanism is indicated 

by the fact that ceramide, but not its inactive analogue dihydroceramide, induced apoptosis in a 

stage-specific manner and decreased embryo development. Furthermore, heat shock induced 

activity of nSMase, enzyme responsible for cleaving sphingomyelin yielding ceramide. Finally, 

from results from Chapter 6, acute heat stress did not cause reduction in oxygen concentration in 

the dominant pre-ovulatory follicle, suggesting that follicular hypoxia is unlikely to be involved 

in reduced oocyte competence and fertility observed during the hot months of the year. In the 

general discussion, implications of these findings are addressed in further detail.  
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As mentioned before, the resistance of the oocyte and embryo to insult changes during 

development and depends on the microenvironment. Heat stress can significantly alter the 

reproductive tract environment directly by elevation in body temperature (Gwazdauskas et al. 

1981; Putney et al. 1988a; Putney et al. 1989; Ealy et al. 1993; Correa-Calderon et al. 2004; 

Khongdee et al. 2006) and by indirect effects such as a reduction in circulating concentrations of 

progesterone (Howell et al. 1994; Sartori et al. 2002a), alteration in follicular development 

(Badinga et al. 1993; Wolfenson et al. 1995; Trout et al. 1998; Wilson et al. 1998), reduction in 

blood flow to the reproductive tract (Roman-Ponce et al. 1978b; Roman-Ponce et al. 1978a; 

Lublin and Wolfenson 1996), and increase in production of ROS in the oviduct (Ozawa et al. 

2004; Matsuzuka et al. 2005a; Matsuzuka et al. 2005b). In Chapter 3, experiments were designed 

to test whether effects of heat shock at two different stages of development were affected by 

oxygen environment. For two-cell embryos and embryos > 16 cells, effects of heat shock on 

embryo survival, as determined by development to the blastocyst stage, were only apparent when 

embryos were heat shocked in high oxygen. Heat shock in embryos > 16 cells induced apoptosis 

in high oxygen but not in low oxygen. Therefore, it was demonstrated that oxygen concentration 

is an important determinant of embryo survival and apoptosis. 

However, oxygen concentration during heat shock was not the only determinant of 

embryonic fate. Heat shock in high oxygen in embryos otherwise cultured in low oxygen 

reduced development by 38.5% while in embryos continuously cultured in high oxygen the 

reduction in development was 91.8% (Figure 3-7). The oxygen concentration prior to or after 

heat shock was also a modifier of the outcome. 

The antioxidant DTT provided partial protection against heat shock and improved overall 

development when culture was performed continuously in high oxygen. DTT results seem to 
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support the idea that 1) ROS are involved in heat shock effects and 2) the embryo develops 

mechanisms to respond to antioxidants as it advances in development.  

The Figure 7-1 represents a tentative model, based on results in the thesis and from the 

literature, to explain and predict the effects of heat shock on embryonic development. In this 

model, the considered factors are the predicted quality of the embryo prior to heat shock, oxygen 

environment, redox status of the embryo and environment, and temperature. Predicted embryo 

quality classification is empirical with embryos produced in vivo from fertile females being 

considered good, embryos produced in vitro as fair and embryos whose quality has been 

compromised by one or more factors (heat stress, inadequate nutrition, etc) being considered bad. 

In panel A is plotted a hypothetical schematic representation to explain the effects of heat shock 

in low oxygen found in the present study. According to the model, culture in low oxygen 

provides the embryo to maintain its redox state by minimizing oxidative stress. Upon heat shock, 

oxidative stress is less due to low oxygen environment and possibly by better redox state of the 

embryo, preventing decrease in embryo development. Panel B represents the opposite from Panel 

A. According to the model in B, culture in high oxygen causes imbalance in redox state of the 

embryo. Upon heat shock, effects of elevated temperature and oxidative stress induced by heat 

shock can add up to unbalanced redox of the embryo and negatively affect embryo development. 

Third panel illustrates the potential role of the antioxidant DTT to mitigate effects of heat shock 

under high oxygen in embryo development in vitro. DTT would act by providing reducing 

equivalents to the embryo, improving its redox state and enabling the embryo to partially 

counteract some of the negative effects (oxidative stress) caused by heat shock in embryo 

development. A fourth model was created as an attempt to extrapolate our current findings to a 

situation in vivo where embryo development is compromised by maternal heat stress. According 
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to this model, which considers the oxygen environment in the reproductive tract to be low 

(Fischer and Bavister 1993), the embryo redox and competence to continue development is 

compromised due to a combination of direct effects of temperature and oxidative stress by 

increased ROS production by the oviduct and the embryo itself (Ozawa et al. 2002; Ozawa et al. 

2004; Matsuzuka et al. 2005a; Matsuzuka et al. 2005b).  

Under some circumstances, heat shock can affect the embryo cultured in low oxygen. 

Under low oxygen, heat shock can increase ROS production (Sakatani et al. 2004; Sakatani et al. 

2007) and compromise embryo development (Rivera et al. 2004a; Sakatani et al. 2004; Sakatani 

et al. 2007). However, as mentioned above, reduction in development seems to be comparatively 

more severe in environment more permissive to oxidative stress like in high oxygen. A 

significant interaction in the effects of heat shock in high and low oxygen described by Rivera et 

al. (2004a) further support a role of oxygen in effects of heat shock. The difference in results 

from the literature highlights the fact that other factors interact with oxygen concentration and 

temperature to determine embryo fate. In vitro, one factor could be the permissiveness of the 

culture medium to oxidative stress, i.e., if embryos are not provided with appropriate energy 

substrates, amino acids and other nutrients, embryos may become more susceptible to stress, 

including oxidative stress. In mice, maternal heat stress caused increased production of ROS 

produced by the oviduct decreasing embryo survival (Ozawa et al. 2002; Ozawa et al. 2004; 

Matsuzuka et al. 2005a; Matsuzuka et al. 2005b). Decreased survival was partially counteracted 

by administration of antioxidant melatonin, which decreased ROS production in the oviduct 

(Matsuzuka et al. 2005b). Despite the origin (embryonic or maternal), there seems to be a 

consensus that ROS can play an important role in the effects of heat shock. Nevertheless, 

determining the amount of ROS production and products of oxidation in the reproductive tract 
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from lactating dairy cows is warranted, as means to establish a definitive model for the role of 

oxidative stress in heat stress effects in the cow. In the cow, the use of antioxidants to improve 

fertility during heat stress has generally yielded no beneficial effects (Ealy et al. 1994; Paula-

Lopes et al. 2003) or slightly beneficial effects (Aréchiga et al. 1998). It is possible that the 

antioxidants used in these experiments (vitamin E, selenium and β-carotene), as well as dose 

and/or frequency of administration were insufficient to impact fertility. In mice, beneficial 

effects of the antioxidant melatonin described above were achieved by intensive subcutaneal 

injection of the drug every 2 hours during exposure to heat stress (Matsuzuka et al. 2005b).  

Another objective of the thesis was to investigate the involvement of oxygen concentration 

and ROS in heat shock-induced apoptosis. Results here support the idea that the signaling for 

apoptosis by heat shock involves ROS by demonstrating that 1) apoptosis occurred in high but 

not low oxygen and 2) antioxidant DTT, which can block diamide-induced apoptosis in embryos 

by blocking ROS formation (Liu et al. 1999), completely blocked heat shock-induced  apoptosis. 

In some circumstances, apoptosis can help protect the embryo by eliminating damaged cells. 

Heat shocked embryos had decreased competence to reach the blastocyst stage when apoptosis 

was blocked using group-II caspase inhibitors (Paula-Lopes and Hansen 2002a). However, if 

apoptosis is a consequence of cell oxidative damage due to ROS production and can be blocked 

by reducing oxidative damage, embryo should be benefited. The antioxidant DTT, despite 

completely blocking heat shock-induced apoptosis, improved embryonic development compared 

to heat shocked controls as opposed to group II caspase inhibitor (Paula-Lopes and Hansen 

2002a). Hence, it is believed that part of the effects of DTT in blocking apoptosis is by reducing 

cell oxidative damage induced by heat shock, an early event in the apoptotic cascade.  
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Ceramide is a necessary signal for induction of the apoptotic cascade in many cells (Basu 

and Kolesnick 1998; Pettus et al. 2002; Kolesnick and Fuks 2003). In Chapter 4 we provide 

evidence that a ceramide signaling mechanism is present in the preimplantation embryo. 

Ceramide, but not its inactive analogue dihydroceramide, induced apoptosis in a stage-specific 

manner, as indicated by increased caspase-9 activation and TUNEL-positive labeling; long-term 

(24 hours) exposure to ceramide reduced ability of Day 5 embryos to develop to the blastocyst 

stage; long-term (24 hours) exposure to ceramide reduced nuclear proliferation and cytokinesis at 

the two-cell stage embryo. Presence of ceramide signaling mechanism is further supported by the 

fact that heat shock increased activity of nSMase which is one of the enzymes capable of 

cleaving sphingomyelin to yield ceramide (Luberto et al. 2002; Sakata et al. 2007). The presence 

of the ceramide signaling mechanism in the preimplantation embryo may prove important for 

understanding induced apoptosis caused by different signals including not only heat shock but 

also TNF-α which employs ceramide in the apoptotic cascade (Garcia-Ruiz et al. 1997; Bulotta 

et al. 2001; Luberto et al. 2002).  

Future studies should be performed to establish the link between ceramide production and 

heat-shock induced apoptosis. Experiments could involve three different approaches: 1) 

inhibiting enzymes involved in ceramide synthesis like the SMases and ceramide synthase 

(Deigner et al. 2001; Luberto et al. 2002; Pru et al. 2002; Czarny and Schnitzer 2004; Miyoshi et 

al. 2004; Claus et al. 2005), 2) manipulating the ceramide/S1P rheostat towards an increase in 

S1P intracellular content (Morita et al. 2000; Roth and Hansen 2004b), and 3) use of antioxidants 

which can block ceramide-induced apoptosis by inhibiting ROS generation (Mansat-de Mas et 

al. 1999; Bezombes et al. 2001a; Maziere et al. 2001).  
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Like heat shock (Paula-Lopes and Hansen 2002b; Paula-Lopes and Hansen 2002a) and 

arsenic (Krininger et al. 2002), ceramide did not induce apoptosis at the two-cell stage. 

Therefore, if ceramide is involved in heat shock-induced apoptosis, it is unlikely that the block in 

apoptosis at the two-cell is at the level of ceramide generation. One interesting finding, also 

described in Chapter 4, was the partial block in cytokinesis at the two-cell stage caused by 

ceramide. Several different mechanisms could be involved in this phenomenon. Because 

apoptosis does not occur at the two-cell stage, direct damage to the DNA and/or organelles could 

have led to check point activation and blocked cell division. However, direct effects of ceramide 

or downstream molecules with cell cycle regulatory molecules cannot be excluded. Although the 

physiological implication of partial block in cytokinesis by ceramide is difficult to establish at 

this point, it demonstrates regulatory functions of ceramide that, to my knowledge, have not been 

observed before. 

To date, effects of heat shock on the oocyte in vitro were studied exclusively using high 

oxygen incubators. However, results from Chapter 3 clearly demonstrated that oxygen 

environment can determine the magnitude of the deleterious effects to the developing embryo. In 

Chapter 5, the objective was to test the hypothesis that heat shock actions on the oocyte would be 

reduced under low oxygen. In contrast to expectations, however, heat shock decreased 

development regardless of whether oocytes were cultured in high or low oxygen. Reduction in 

oocyte competence in low oxygen, close to those observed in vivo (Chapter 6), can negatively 

affect the oocyte and its ability to reach the blastocyst stage. There may be a role for ROS in 

effects of heat shock in the oocyte cultured in low oxygen because of the large number of 

cumulus cells surrounding the oocyte and their potential for generating increased ROS under 

high oxygen. In this scenario, cumulus cells could produce ROS.  
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Also in Chapter 5, the overall development to blastocyst stage was high and the decrease in 

development caused by heat shock was low, in contrast with most studies in the literature 

involving effects of heat shock in the oocyte. In evaluating the results from this literature, a trend 

was observed that indicates that the severity of deleterious effects of heat shock tended to be 

more severe when overall development was low (Payton et al. 2004; Roth and Hansen 2004b; 

Edwards et al. 2005) and vice-versa (Edwards and Hansen 1997). This observation can be further 

supported by the fact that heat shock to the oocyte normally causes very little, if any, effect on 

cleavage rate (Edwards and Hansen 1996; Payton et al. 2004; Edwards et al. 2005; Ju et al. 

2005), meaning that the oocyte is still alive past fertilization and first cleavage cycles. Maybe 

given suitable conditions, a higher percentage of affected oocytes/embryos may recover and 

develop further to at least the blastocyst stage. 

Although elevated temperatures in vivo and in vitro (in high and low oxygen) reduces 

oocyte competence, indirect effects of heat stress to the cow can further affect oocyte 

competence and contribute to reduction in fertility. Among these indirect effects potentially 

contributing to low fertility during the hot months is increased blood flow to the periphery 

(Choshniak et al. 1982), reducing blood flow to the reproductive tract (Roman-Ponce et al. 

1978b; Roman-Ponce et al. 1978a; Lublin and Wolfenson 1996) and potentially lowering oxygen 

concentration in the ovarian dominant follicle. However, oxygen concentration in the dominant 

preovulatory follicle from heat stressed cows was not different from non-heat stressed cows. As 

mentioned in Chapter 6, several factors could be responsible for preventing decrease in oxygen 

concentration in ovarian follicles of heat stressed cows. Experiments employing Doppler 

ultrasound to determine blood flow in the ovaries and follicles from heat stressed cows would 

provide additional information regarding local regulation of blood perfusion. Nevertheless, 
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decreased oxygen concentration is unlikely to play a role in reduction of fertility due to heat 

stress.  

The negative correlation between follicular size and oxygen concentration has been 

reported previously in humans (Fischer et al. 1992) and pigs (Basini et al., 2004). However, this 

is the first report of the follicular oxygen concentration in dominant pre-ovulatory follicles in 

cattle. The findings mentioned above may have implications to the current protocols of in vitro 

maturation. The oocyte is surrounded by fluid containing oxygen concentrations much lower 

than atmospheric oxygen concentration used in most in vitro maturation systems 

(Pinyopummintr and Bavister 1995; de Matos et al. 1997; Hashimoto et al. 1998; Roth and 

Hansen 2004a). Under many conditions, oocyte maturation in vitro is more effective under 

atmospheric oxygen than under 5% oxygen (Hashimoto et al. 1998). The greater requirement for 

a high oxygen concentration in vitro may reflect the static nature of the in vitro system. On the 

other hand, glucose is usually not compensated for, and its concentration in most standard 

maturation media at the beginning of maturation (5.6 mM) (Hashimoto et al. 1998; Rivera and 

Hansen 2001; Harvey et al. 2004a) is similar to that in follicular fluid (Iwata et al. 2004; Orsi et 

al. 2005). This causes an imbalance in the oxygen:glucose ratio. To make matters worse, glucose 

concentration has been shown to drop to as low as 1.5 mM at the end of in vitro maturation 

(Sutton-McDowall et al. 2004), leading to an environment where the ratio oxygen:glucose is 

further unbalanced. Results in Chapter 5 and from Hashimoto et al. (2000a) demonstrate that 

decreasing oxygen to 5% in vitro (which is similar to concentration found in vivo in Chapter 6), 

required an increase in glucose concentration to 20 mM to allow successful oocyte maturation. 

Therefore, to date the variations shown to be successful in bovine oocyte maturation include 
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either high oxygen:glucose or high glucose:oxygen ratios, which are not similar to the ratio 

found in vivo.  

The most commonly used protocol for bovine oocyte maturation employs 21% oxygen and 

5.6 mM glucose (high oxygen:glucose ratio). I suggest that maturation in vitro could be 

optimized by decreasing oxygen to intermediate concentrations (e.g., 10 to 15%) and increasing 

glucose concentrations (e.g., 8 to 12 mM). In this scenario, neither oxygen nor glucose would be 

overcompensated and a similar ratio oxygen:glucose to the encountered in vivo would be 

achieved.  

In conclusion, this thesis resulted in a new understanding of the role of oxygen and 

ceramide signaling in mediating effects of heat shock on oocytes and embryos. Perhaps the most 

significant finding was that oxygen concentration is a major determinant of the fate of embryos 

exposed to heat shock. Indeed, effects of heat shock on embryonic development and apoptosis 

was only apparent when embryos were cultured in high oxygen. Moreover, heat-shock induced 

apoptosis was blocked by antioxidant DTT, suggesting the necessity of ROS as an early factor in 

the apoptotic cascade induced by heat shock. Evidence was suggested that ceramide may be one 

of the signals activated by heat shock that causes apoptosis because the presence of ceramide-

sensitive signaling mechanisms in the embryo were demonstrated as was the increase in nSMase 

by heat shock. Further experiments are warranted to further delineate the importance of this 

signaling pathway and its relevance to ROS production.  

In the oocyte, the fact that heat shock decreased oocyte competence regardless of oxygen 

environment demonstrated that elevated temperature can directly affect the COC in oxygen 

conditions similar to encountered in vivo. Given that acute heat stress did not change oxygen 
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concentration in dominant pre-ovulatory follicles, it is unlikely that effects of heat stress in 

reducing fertility are mediated through decreased oxygen availability to the COC.  

Even though heat shock blocked embryo development only in an oxygen concentration 

higher than present in utero, it is possible that results are physiologically relevant. Indeed, based 

on the results in mice that indicate that the oviduct provides a more oxidative environment 

during heat stress (Ozawa et al. 2002; Ozawa et al. 2004; Matsuzuka et al. 2005a; Matsuzuka et 

al. 2005b), effects of heat shock in vitro may be more representative of the situation encountered 

in vivo in the cow when embryos are cultured under high oxygen than when cultured under low 

oxygen.  

One potentially-practical outcome of this research should be renewed focus on use of 

antioxidants to improve fertility of heat-stressed dairy cows. Previous attempts to improve 

fertility during heat stress with antioxidants have shown only limited success (Ealy et al. 1994; 

Aréchiga et al. 1998; Paula-Lopes et al. 2003) but it is possible that this failure reflects 

inadequate knowledge of how to improve redox status of the reproductive tract more than it does 

the lack of importance of ROS in heat-stressed induced infertility 
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Figure 7-1. Tentative model to explain and predict the effects of heat shock on embryonic 
development. Considered factors are: predicted quality of the embryo prior to heat 
shock (good, fair and bad; see text for details), oxygen environment, redox status of 
the embryo and environment, and temperature. A) Hypothetical schematic 
representation to explain the effects of heat shock in low oxygen found in the present 
study. According to the model, culture in low oxygen provides the embryo to 
maintain its redox state by minimizing oxidative stress. Upon heat shock, oxidative 
stress is less due to low oxygen environment and possibly by better redox state of the 
embryo, preventing decrease in embryo development. B) According to the model 
culture in high oxygen causes imbalance in redox state of the embryo. Upon heat 
shock, effects of elevated temperature and oxidative stress induced by heat shock can 
add up to unbalanced redox of the embryo and negatively affect embryo 
development. C) Potential role of the antioxidant DTT to mitigate effects of heat 
shock under high oxygen in embryo development in vitro. DTT would act by 
providing reducing equivalents to the embryo, improving its redox state and enabling 
the embryo to counteract some of the negative effects caused by heat shock in embryo 
development. D) Model created as an attempt to extrapolate our current findings to a 
situation in vivo where embryo development is compromised by maternal heat stress. 
According to this model, which consider the oxygen environment in the reproductive 
tract to be low, the embryo redox and competence to continue development is 
compromised due to a combination of direct effects of temperature and oxidative 
stress by increased ROS production by the oviduct and the embryo it self. 
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