Effect of Rust and other pathogens on on Forage Quality

A.T. Adesogan O.C.M. Quieroz S.C. Kim

Department of Animal Sciences

IFAS Research

Introduction

- Significant crop losses to disease in '02 and 03 in FLA
- Southern rust is one of the most common diseases
- Unpredictable incidence, yet v. aggressive
- Cause leaf death, stalk rot, lodging, crop failure

Southern rust

- Aggressive fungal disease; destroys field in 7-10 days
- Dispersed by airborne spores of *Puccinia polysora*
- Forms orange, circular pustules on upper leaf surface.
- Saps nutrients causing leaf death.
- Common with high temps, high humidity

Southern rust

www.biomedia.cellbiology.ubc.ca/

http://www.ianrpubs.unl.edu/epublic/pages/ publicationD.jsp?publicationId=720

Common Rust

- •P. sorghi
- •60-77° F
- •Both leaf surfaces
- •Red to brown
- Sparsely scattered

<u>Southern rust</u> *P. polyspora*77- 90° F
Upper leaf surfaces
Orange
Dense clusters

(Jackson, 2008)

Southern leaf blight

- Appears at end of spring / during fall with warm to hot temperatures (68-90°F) and periods of extended leaf wetness (Raid and Kucharek, 2005).
- Caused by the fungus Helminthosporium or Bipolaris maydis
- Causes long, tan to brown, cigar-shaped lesions that can coalesce & make the entire leaf necrotic.
- Infestation begins with the mature leaves and proceeds up the plant.

Southern leaf blight

www.plant.uga.edu

Helminthosporium

www.plant.uga.edu

Challenges

 Few resistant varieties hybrids exist and these may lack traits needed for silage production

 Fungicides can only control the disease when applied early in the season

Knowledge gap

• Little is known about:

> Rust effects on nutritive value of corn silage

Safety of feeding rust-infected corn

Objective

- To determine how the level of southern rust infestation affects nutritive value, fermentation and bunk life of corn silage.
- To determine if a microbial inoculant can improve the quality of rust-infested corn silage

Methods

- Pioneer 33V16 hybrid grown on a 130-acre field (July 6, 07)
- Infested by rust after tasseling
- Abound fungicide applied by crop duster (Sept, 7 07)
- Uneven coverage allowed some rust to persist
- Field classified into clean, medium rust or high rust areas

Rust treatments

High rust

Medium rust

High-rust treatment

Treatments

No.	Rust	Inoculant
1	Clean	_
2	Medium	—
3	High	—
4	Clean	+
5	Medium	+
6	High	+

Each treatment was ensiled in four replicate, 5 gallon mini silos for 97 days

Inoculant

- Buchneri 500 (Lallemand Animal Nutrition)
- Combo inoculant
- Applied at a rate that supplied 4.99 x 10¹⁰ cfu/g of :
 - Pediococcus pentosaceaus
 - Lactobacillus buchneri

Corn forage composition

	Clean	Medium rust	High rust
DM, %	39	41	58
NDF, %	45	49	55
ADF, %	26	29	33
CP, %	8	8	9
In vitro NDFD %	35	34	33
In vitro DMD, %	64	59	55
Mycotoxins, ppm	0	0	0

Treatment effects on silage % DM

Treatment effects on silage % NDF

Treatment effects on NDF digestibility, %

Treatment effects on DM digestibility, %

Nutritive value conclusions

Rust infestation:

- Dried the forage
- Increased NDF content
- Decreased digestibility of NDF and DM

Inoculant treatment: > Increased NDF digestibility in clean & medium rust silages

Treatment effects on pH

Treatment effects on Lactate %

■ Control ■ Inoculant

Treatment effects on Acetate %

■ Control ■ Inoculant

Treatment effects on Butyrate %

Control Inoculant

Fermentation conclusions

- Rust infestation:
 - Reduced the pH & fermentation acid production
 - Caused a poorer type of fermentation
- Inoculant treatment:
 - Reduced some adverse effects of rust on the fermentation

Treatment effects on Molds, log cfu/g

Treatment effects on hours of bunk life

Control Inoculant

Treatment effects on aflatoxin, ppm

Control Inoculant

Treatment effects on zearalenone, ppm

Mold, mycotoxin & bunk life conclusions

- Rust reduced molds and improved bunk life but made the silage unsafe to feed due to excess high aflatoxin levels
- High zearalenone in clean silages suggests lateharvested summer corn should be fed with mycotoxin binders.

Take home messages

- Rust infestation can reduce nutritive value and fermentation
- High rust infestation can cause dangerously high aflatoxin levels
- Inoculant application can reduce some adverse effects of severe rust infestation
- Use rust-resistant summer corn
- Feed late-harvested summer corn with a mycotoxin binder

Acknowledgements

• SMI Check-Off

• A. Pedroso; M. Huisden; K. Arriola; T. Kang