Update on Corn and Corn Grain Use on Dairy Farms Florida/Georgia Corn Silage and Forage Field Day

Mike Hutjens Extension Dairy Specialist University of Illinois Extension

Today's Program

- Shredlage processed corn silage
- Snaplage as a high moisture corn
- Evaluating starch use in dairy cows
- Your questions and concerns

Shredlage Update

Shredlage: What Is It?

- Longitudinally ripped forage (increase surface area)
- Stalk pieces about the size of an alfalfa steam (1.25 inch TLC or 30 mm)
- Rhine of plant completely opened up.
- Smashed corn kernels
- Seems softer and fluffier.

Shredlage

Photos provided by Kevin Shinners. UW Madison. BSE

Materials resulted from water separation technic ue done by Kevin Shinners, UW Madison, BSE

Penn State Separator Box (as-fed basis)

Screen, mm	Shredlage	KP
19	31.5%	5.6%
8	41.5%	75.6%
1.18	26.2%	18.4%
Pan	0.8%	0.4%

Samples obtained during feed-out from the silo bags

Luiz Ferraretto & Randy Shaver Dairy Science Department,

Component-Corrected Milk Yields

	Shredlage	KP	P <
3.5% FCM, lb/d	100.1	97.8	0.07
FCM/DMI	1.77	1.79	0.65
ECM, Ib/d	99.2	97.2	0.10
ECM/DMI	1.76	1.77	0.50

Luiz Ferraretto & Randy Shaver Dairy Science Department, UW Madison

3.5% FCM Yield by Week

Week on Treatment

Week × Treatment Interaction (P < 0.03)

Wisconsin Farm Shredlage

Middle: 27%

Bottom: 29%

2012 Illinois Winning Corn Silage Sample (Conventional Processed)

 Top:
 63g
 13.3%

 Middle:
 326g
 68.8%

 Bottom:
 85g
 17.9%

Top Box: 13.3%

Middle Box: 68.8%

() in

Bottom Box: 17.9%

Penn State Separator

	Тор	2nd	3rd	Bottom
		% (a	s fed)	
TMR	10-15	> 40	< 30	< 20
Haylage	> 40	> 40	<20	< 5
Corn silage	5-15	> 50	< 30	< 5
(3/4 TLC-Process)				

Snaplage Alternatives

Snaplage Alterative

- Includes ear, husk, and parts of the plant
- Contain 25% NDF and 50 to 60% starch
- Increase yield by 15 to 25% dry matter / acre
- 80 to 90% energy value of shelled corn
- Harvest at 40 to 45% dry matter (at black layer)
- Inoculate with L. buchneri

Nutrient Comparison of HMC				
	Shelled	Ear %	Snaplage	
Dry matter	28-32	32-36	38-45	
Starch	70-72	60-65	50-60	
NDF	9	20	16-23	
Protein	10	8	8-10	

Management Considerations

- Starch is rapidly fermented due to the higher moisture content
- Cob and plant portion has 60% value of corn (value of grass forage)
- May need to add dry corn or barley
 - Reach desired ration starch levels
 - Slow down the rate of starch degradation
- Monitor milk fat test and dry matter intake

Fecal Second

Evaluating Manure

- Fecal starch analysis
 - Measuring total tract starch utilization
 - Economic loss in milk yield
- Manure washing
 - Physical presence of feed particles
 - Forage quality evaluation
- Manure scoring
 - Cow responses sorting, days in milk, pen evaluation

Apparent digestibility of feed starch and fecal starch **%DM** 1 Apparent digestibility of Feed DM 0.9 Starch, % 8.0

y = -0.0176x + 0.9872

 $R^2 = 0.7345$

4

0.7

0

2

Fecal Starch, % DM

8

6

10

12

14

Illinois Herd Results

Variable	Mean	SD	Range
Starch dig (%)	84.6	7.0	70-96
Fecal starch (%)	6.0	1.6	3.9 - 9.9
Fecal lignin (%)	7.2	4.4	3.7 - 19.2
Fecal NDF(%)	55.5	4.1	14.0 - 30.3
Feed starch (%)	22.4	2.0	19.9 - 26.4
Feed NDF (%)	32.6	1.6	29.8 - 34.8
Feed lignin (%)	3.4	0.4	2.5 - 4.1

Milk response

- Fecal starch should be less than 4.5% represents total tract apparent digestibility of 90+ percent.
- If fecal starch can be reduced 1 unit (absolute decrease from 10% to 9%), milk production could increase 0.67 pound (dry matter intake remains constant).

WASHING MANURE

- Use a number 6 or 8 screen
- Evaluate a cup of manure
- Use pressurized water
- Cows to evaluate
 - dry cows
 - fresh cows
 - high cows
 - high producing 1st lact cows
 - various groups of cows

MANURE SCREENING

Rumen

- Passage of split soybeans
 Presence of whole cottonseed
 Processing

 Appearance whole soybeans
 Presence of whole corn seed
 Presence of forage particles over 1/2"

 Combination of rumen and processing
 - Appearance of starch in corn seed

CONSISTENCY

- Score 1 Thin, fluid, arcs, green
 - Example: sick cow, off feed, cows on pasture
- Score 2 Loose, splatters, little form
 - Example: fresh cow, cows on pasture
- Score 3 Stacks up 1 to 1 1/2 inches, dimples, 2 to 4 concentric rings, sticks to boot
 - Example: Recommended
- Score 4 Stacks up 2 to 3 inches, dry
 - Example: Dry cow, low protein, high fiber
- Score 5 Stacks up over 3 inches
 - Example: All forage, sick cow

MANURE CHANGES

Stage of lactation	Scores
• Dry cow	3.5
 Close up dry cow 	3.0
Fresh cows	2.5
 High cows 	3.0
 Late lactation cows 	3.5

MANURE/FEED FACTORS

•	Excess degradable or soluble protein	Lower
•	Excess total protein or RUP	Lower
•	High levels of fiber/forage	Higher
•	Excessive starch/grain	Lower
•	Lack of effective NDF	Lower
•	Excess minerals	Lower

Evaluating Manure Scores

• High groups

< 5% at 1 < 20% at 2 > 80% at 3

Low groups

No score 1 <10% at 2 >90% at 3

Take Home Messages

- Shredlage may be an alternative to replace hay and long forage particles.
- Snaplage will be an attractive alternative for some dairy managers.
- Monitor starch utilization including fecal and *invitro* analysis.

http://www.livestocktrail.uiuc.edu

ILLINI DAIRYNET The Online Resource for the Dairy Industry

http://www.livestocktrail.uiuc.edu/dairynet/

Questions?