

Range Cattle Research and Education Center - Ona FL

Silage and Haylage of Warm-Season Grasses

Joe Vendramini Forage Specialist

Definition

 Silage is the feedstuff produced by the fermentation of a forage crop of high moisture concentration, typically greater than 60%

 Haylage, baleage, round bale silage, are products of fermentation with ~ 50% DM

Definition

"Ensiling is the name given the process of making silage and is defined as a forage preservation method based on spontaneous fermentation under anaerobic conditions"

Desirable material to be ensiled

Adequated moisture

 High water soluble carbohydrates concentration (WSC)

Compactation

Ensiling process

Aerobic phase

Fermentation phase

Stable phase

Warm-Season Grasses Characteristics

- High water concentration Low DM concentration ~ 20%
- Increase maturity will increase DM concentration
- High *Clostridium* activity

Warm-Season Grasses Characteristics

Low water soluble carbohydrates

- Temperate grasses fructans
- Tropical grasses Starch
- LAB do not have the ability to ferment starch directly (McDonald et al., 1991)

Treatments: Warm-season grass species with or without inoculant (Si-All)

	Forage Name							
Item	Elephantgrass	Stargrass	Mulato	Limpograss	Jiggs	Tifton	Р	SE
						85	value	
DM, %	18	44	37	41	45	43	<0.01	4
СР, %	3.4	10.9	8.1	6.8	9.7	9.0	0.03	2.8
ADF, %	46.1	41.3	40.1	44.1	43.7	41.1	0.04	2.1
NDF, %	66.6	65.1	57.6	63.1	69.0	69.3	<0.01	2.0
IVTD, %	50.8	62.5	63.5	58.7	56.2	56.0	0.03	2.1
NDFD, %	40.7	50.5	56.0	48.5	44.7	46.9	0.20	3.2

	Forage Name							
Item	Elephantgrass	Stargrass	Mulato	Limpograss	Jiggs	Tifton	Р	SE
						85	value	
рН	8.3	7.5	7.4	6.5	8.6	8.2	0.04	0.5
Lactate, %	0.1	2.1	0.7	2.6	0.4	1.2	0.04	0.5
Acetate, %	3.6	2.4	3.8	1.4	1.1	2.0	0.10	0.6
NH3, % N	41	27	19	16	29	31	0.09	6.0
Mold, log	5.8	3.6	5.6	3.0	5.7	5.6	0.03	0.5
cfu/g								

- Ensiling losses
- Highest DM / energy losses from fermentation are those related to *Clostridium* activity.
- Low DM, high T⁰, and pH >5.0
- Final products: butyric acid, water, and CO₂

Effluent Losses

- Factors related with effluent losses: DM concentration, type of silo, degree of packing, and pre-treatment of the crop (McDonald et al., 1991)
- DM concentrations between 28% and 30% decrease effluent losses

✓ Gaseous Losses

- Homofermentative bacteria utilizing glucose as a substrate reduce gaseous losses
- Heterofermentative bacteria producing alcohol, acetic acid and CO2
- Particle size play a important role in gaseous losses

Energy losses based in different fermentation pathways

Microorganism	Substrate	End product	Losses (% energy)	
Homoferment.	Glucose	Lactate	0	
Heteroferment.	Glucose	Lactate, Ethanol and CO ₂	1.7	
Clostridium	Lactate	Butyrate and CO ₂	18.4	

Source: Adapted from Balsalobre et al. (2001)

- Feedout Losses
- Aerobic microorganisms consuming sugars, fermentation products an other nutrients
- Aerobic stability during feedout was decreased when homofermentative bacteria or citrus pulp was added at silo filling (Veiga et al., 2000)

Additives

- Additives are used to improve silage preservation
- Fermentation stimulants
- Fermentation inhibitors
- Aerobic deterioration inhibitors
- Absorbents

Additives

Citrus pulp and Molasses

- Addition of WSC and increase DM concentrations
- Faster drop in pH
- Reduced ammonia-N concentration

Additives

Effects of particle size, citrus pulp addition, and forage wilting on attributes of Tanzania guineagrass silage

	<u></u>						Citrus	pulp (100	g kg ⁻¹
Parameters	Wilting		No Citrus pulp			fresh weight)			
Particle size	Large	Medium	Small	Large	Medium	Small	Large	Medium	Small
DM (g kg ⁻¹)		309	<u> </u>		204			272	
Effluent (L Mg ⁻¹								······	
fresh)	0.86 ^{c‡}	1.48°	2.07 ^c	15.5 ^a	14.4ª	10.5 ^a	2.56 ^{bc}	3.96 [°]	4.21 ^b
Gases (g kg ⁻¹ DM)	125 ^{cd}	145 ^{bcd}	123 ^{cd}	195ª	150 ^{bc}	136 ^{cd}	145^{bcd}	142 ^{bcd}	87 ^e
pH	5.55 ^{bc}	6.44ª	5.51 ^{bc}	5.61 ^b	5.35 ^{bc}	5.15 ^{cd}	4.91 ^{de}	4.71 ^e	4.65 ^e
Bulk density									
(kg m ⁻³)	305 ^b	303 ^{bc}	310 ^b	255 ^e	281 ^d	314 ^b	307 ^b	292°	354 ^a
A dantad from A m	ior at al	(2001)							

Adapted from Aguiar et al. (2001)

[‡]Means within a row not followed by the same letter are different (P < 0.05).

Tifton 85 – 4 wks regrowth Treatments: Control, Ecosyl, and Molasses (2% As Fed)

		Tifton 85			
Item	Control	Ecosyl	Molasses	P value	SE
DM, %	58	59	61	0.28	1.4
CP, % of DM	12.7	13.0	12.4	0.54	0.4
ADF, % of DM	37.4	37.4	37.1	0.96	1.1
NDF, % of DM	71.5	70.5	69.9	0.76	1.4
IVDOM, % of DM	51.0	52.7	53.1	0.24	1.1
рН	4.8	4.8	4.9	0.86	0.1
Lactate, % of DM	2.60	2.37	2.02	0.40	0.3
Acetate, % of DM	0.62	0.51	0.33	0.02	0.1
NH ₃ -N, (%, total N)	8.0	6.4	6.0	0.05	0.4
Mold, log cfu/g	3.32	3.00	4.15	0.27	0.4

Species = Jiggs (J) and Tifton 85 (T) Moisture = 53% (D) and 23% (W) DM Inoculants = Ecosyl (E), B500 (B), Molasses 2% (M), Control (C)

Variables			
	Species	Moisture	Inoculant
DM, %	=	D>W	=
CP, % of DM	=	=	=
ADF, % of DM	T>J	D>W	M <other< th=""></other<>
NDF, % of DM	T>J	W>D	M <other< th=""></other<>
рН	=	D>W	M <other< th=""></other<>
Lactate, % of DM	=	W>D	M>Other
Acetate, % of DM	=	W>D	=
IVDOM, % of DM	=	W>D	M>Other
NDFD, % of DM	T>J	=	=

Conclusion

 In general, tropical grasses have undesirable characteristics to be ensiled. However, management practices, such as wilting and additives, may enhance warm-season grass silage nutritive value and fermentation characteristics

✓ Do we have a choice?

Thanks! jv@ufl.edu

Joe Vendramini, Forage Specialist

UF/IFAS Range Cattle REC