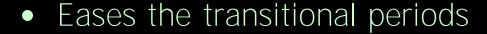
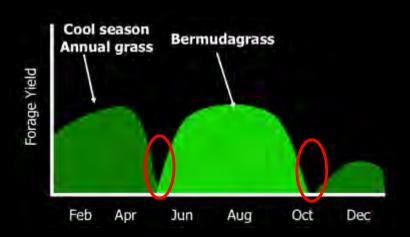


Dr. Dennis Hancock

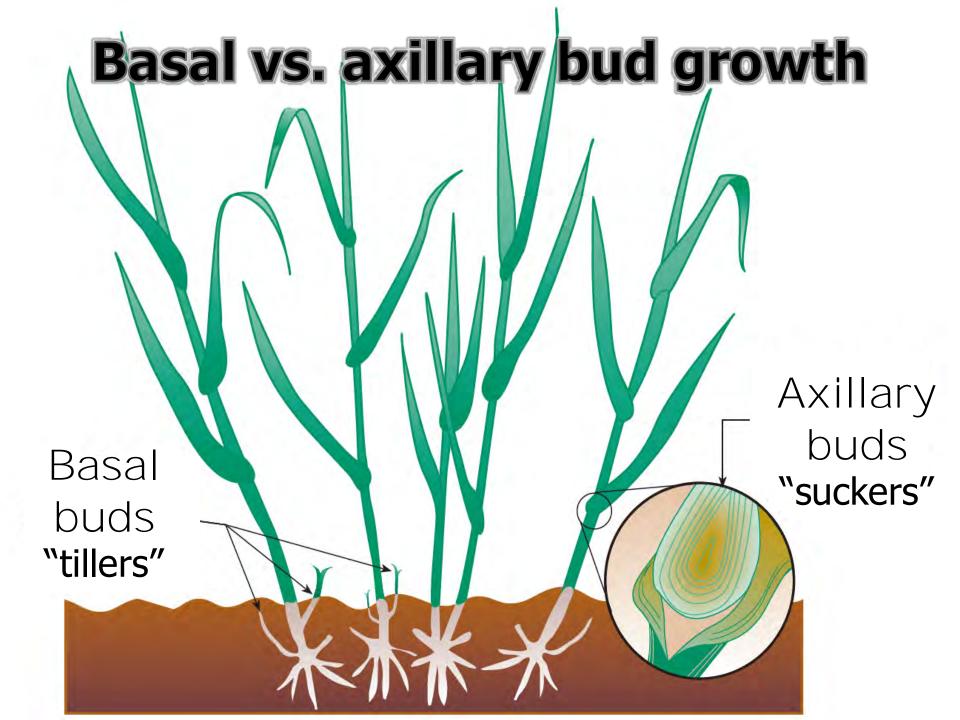
Extension Forage Specialist

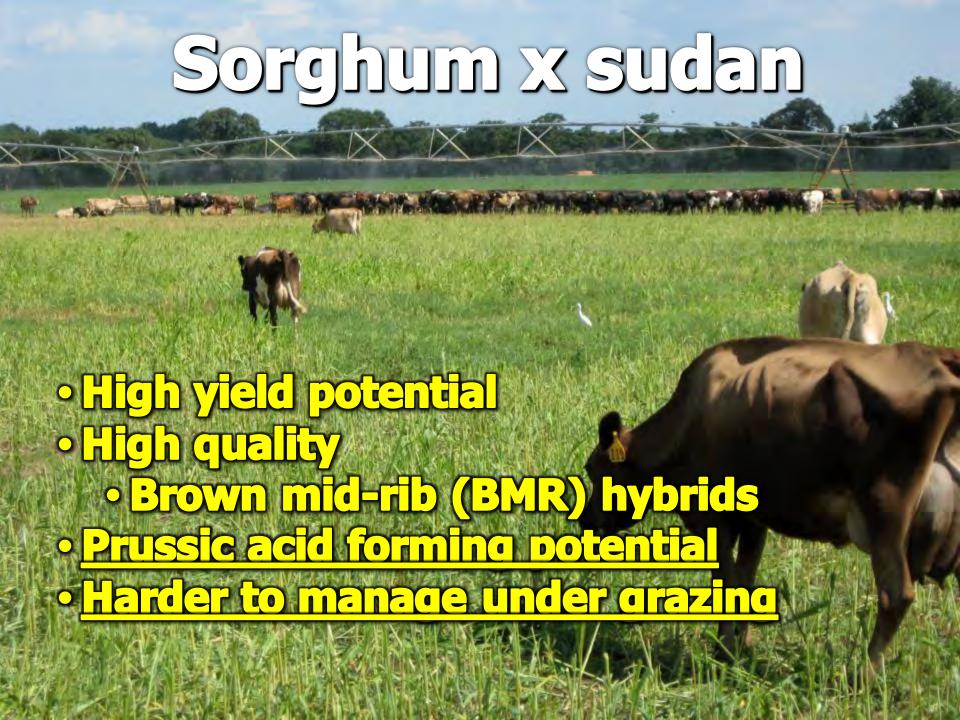
Crop and Soil Sciences – UGA


Forage Distribution in the Southeast

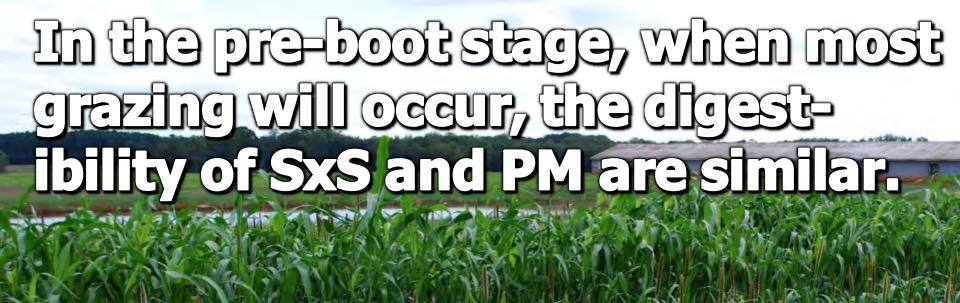

Dual Forage System

- Using both in some proportion:
 - **50%:50%**
 - 60%:40%
 - **75%:25%**


 Proportion (ratio) depends upon calving/breeding timing



Differences in Forage Quality


Forage Characteristic	Forage Sorghum ¹	Pearl Millet ²	Tropical Corn ³	SEM
		(%)		
NDF, % of DM*	63.6	61.8	54.5	0.59
WSC, % of DM*	14.6	9.9	20.7	0.42
рН	4.09	4.50	3.96	0.06
Lactic Acid, % of DM	5.61	3.33	4.42	0.32
Acetic Acid, % of DM	6.78	3.97	3.93	0.41
DM Digestibility, %	56.8	51.4	58.1	1.47
DM Intake, lbs/d	8.7	9.5	8.6	0.14

^{1) &#}x27;NK 300'; 2) 'Pennleaf'; 3) 'X304C'

Adapted from Ward et al. 2001. J. Dairy Sci. 84:177–182

^{*} Measured prior to ensiling

Effect of Growth Stage on 24 and 48-hr DM Digestibility of Pearl Millet and Sorghum x Sudangrass

	DM Digestibility		
Growth Stage	24 hr	48 hr	
P. Millet, pre-boot	61.7 a	76.3 a	
S x Sudan, pre-boot	63.1 a	76.3 a	
S x Sudan, early bloom	55.2 b	65.5 b	

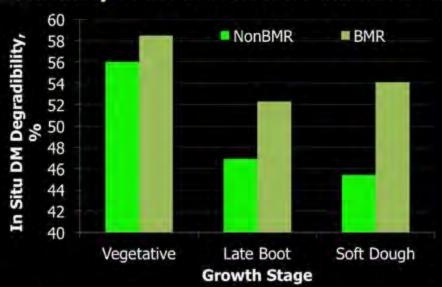
Adapted from Hoveland et al. 1967. Auburn Univ. AES Report. Leaflet 76.

When grazed in the pre-boot stage, SxS and PM are more or less equal.

Effect of N Rate on Pre-Boot P. Millet and S. x Sudangrass Forage Yield

N Rates represent seasonal totals with each N treatment equally split into 4 applications, one per month. Adapted from Hoveland et al. 1967. Auburn Univ. AES Report, Leaflet 76.

GRASS


Notice that there is little N response when kept (grazed) in the pre-boot stage.

Digestibility of SxS and BMR SxS decreases with maturity.

But, the decline in BMR quality is not as steep.

Adapted from Beck et al., 2007 J. Anim. Sci. 2007. 85:545-555

Genetic Traits

Trait	Description and Significance
	Brown midrib, reduced lignin content and higher forage digestibility
	Photo-period sensitive, delay flowering provides flexibility in harvest management
I KI) I	Brachytic dwarf increases the leaf to stalk ratio by shortened internode distance
\/ \	Male sterile produce no grain and thus sugar and protein stay in leaves
DS	Dry stalk is dry at boot stage for direct harvest

Quality and Animal Performance when Pearl Millet was Drilled on Narrow Rows or Planted on Wide Rows

	Conventional drill, 10" row spacing, 25 lbs seed /acre	Grain Planter, 36" rows, 5 lbs seed/acre
CP, %	25.4 a	22.6 b
TDN, %	74.0 a	71.7 ь
IVDMD, %	77.2 a	75.0 a
ADG, lbs/head/d	1.49 a	1.45 ь
Gain/acre, lbs	478 a	454 ь
A A COLOR AND AND AND AND		

Adapted from Hill et al. 1999. J. Prod. Agric. 12:578-580.

GRAS.


Crabgrass

Adaptation	Warm climates of the southeastern U.S. Tolerates poor drained soils. Not drought tolerant.
Qualities	Easy to grow, fills in gaps in the field. 4000-7000 lbs DM/acre
	Seed should be drilled 1/4 in. deep at 4 - 6 lb/acre or broadcast at 4 - 6 lb/acre in March - May.
Varieties	Red River, Quick and Big, Mojo

Results: Animal Production

Results: Animal Production

 No difference was observed between treatments in regards to final bw, total bw gain, and ultrasoundassessed responses (Ribeye area, fat thickness at the 12th Rib and on the rump, and intramuscular fat percentage)

Leaf Rust Reduces Yield, Digestibility, and Sugars, but Increases Protein

	Yield	IVDMD	СР	Total Sugars
Leaves	-36.4%	-17.8%	10.0%	-48.3%
Stems	-36.9%	-4.2%	14.6%	-75.8%
Total Forage	-36.8%	-7.3%	12.1%	-64.4%

Adapted from Monson et al. 1986. Crop Sci. 26: 637-639.

Insecticide Options:

- Sivanto (flupyradifurone) labeled in some states
 - Rate of 4.0-7.0 oz./acre
- Section 18 label (GA) for Transform WG (sulfoxaflor)
 - Rate of 1.0-1.5 oz/acre is about 90% effective
- Pyrethroids are not recommended. Can kill beneficials and cause SCA pop to flare.

