Combining legumes in grass-legume mixtures in pastures

Jose Dubeux University of Florida – NFREC dubeux@ufl.edu 2018 Corn Silage and Forage Field Day May 24, 2018

Reasons to integrate forage legumes into grass pastures

- Nitrogen fixation and transfer to associated grass
- Increase forage nutritive value and animal performance
- Reduce environmental problems associated with N fertilizer

Why is it so difficult to integrate forage legumes into grass pastures?

- Warm-season C4 grasses outcompete legumes
- Legumes are preferred and overgrazed as a result
- Ability of legumes to perenniate and regrow after grazing

What are the options in Florida?

Warm-season

- Perennial legumes:
 - Rhizoma peanut
 - Pintoi peanut
 - Carpon desmodium
- <u>Annual legumes:</u>
 - Aeschynomene
 - Alyceclover
 - Cowpea
 - Sunn hemp
 - Pigeon Pea (1-2 yr)
 - Forage Soybean
 - Peanut

Cool-season

- <u>Short-lived perennials</u>
 Alfalfa
- <u>Annual legumes</u>
 - Clovers (crimson, red, white, ball, arrowleaf, berseem, balansa)
 - Sweet clover
 - Medics
 - Vetchs
 - Peas

A case study: perennial peanut-bahiagrass overseeded with cool-season grass-legume mix

- Perennial peanut has a well-established hay industry in Florida with approximately 30,000 acres
- There are opportunities, however, to incorporate legumes into grazing systems

Bahiagrass is planted to over 2 million acres in Florida and over 4 million acres in SE USA
Integrating perennial peanut into bahiagrass pastures reduces N from fertilizers and increases livestock performance

The good news is: They get along really well!

They came from the same place...

Under grazing, we expect a lower BNF because of:

1. Less RP cover (compared to pure RP stands)

2. Frequent defoliation

Nitrogen from BNF will decay slowly from OM mineralization, acting as slow-release N

How about the nutritive value?

Cattle select rhizoma peanut when grazing

Valencia et al. (2001)

Cattle perform better in mixed RP-BG than in bahiagrass only pasture

Establishing perennial peanut into grass pastures

How can we get started?

- Planting perennial peanut and the grass at the same time
- No-till planting into existing grass sod in the entire area
- Strip-planting perennial peanut into existing grass sod

Planting grass and peanut simultaneously

- Tifton-85 bermudagrass planted (April) @ 40 bushels/acre with sprigger and cultipacked thereafter
- Perennial peanut planted the same day @ 80 bushels/acre

Weed control with Imazapic and mowing

Perennial peanut and Tifton 85 bermudagrass 3 yrs. after establishment, UF/IFAS – NFREC, Marianna, FL.

No-till planting perennial peanut into existing sod

If you are establishing perennial peanut using notill into existing grass sod, you need to suppress the grass growth

- Imazapic at 2-4 oz./A works well
- Mowing the grass frequently (e.g., every 4-5 weeks) should help to establish the peanut as well and make some good-quality hay

Perennial peanut no-till planted into Pensacola bahiagrass sod; picture shows the stand 3 years after planting, UF/IFAS – NFREC, Marianna, FL. Perennial peanut no-till planted into Tifton-9 bahiagrass sod; picture shows the stand 2 years after planting, Madison, FL.

Strip-planting perennial peanut into bahiagrass sod

Ecoturf perennial peanut strip-planted into Argentine bahiagrass sod 2 yrs. after planting, UF/IFAS – NFREC, Marianna, FL.

Strip-planting perennial peanut into bahiagrass sod

- Strip-planting reduces cost of establishment
- Perennial peanut is planted in 50% of the area
- Grass strips might be used for hay

Strips allow better use of herbicides to control weeds
In the long-term, peanut will spread to the grass strips

Grazing study

Warm-season	Cool-season
Fertilized bahiagrass = 100	Cool-season grass + 100 lb
lb N acre ⁻¹ (BHF)	N acre ⁻¹
Unfertilized bahiagrass	Cool season grass-legume
pastures (BH)	mixture + 30 lb N acre ⁻¹
Bahiagrass-Rhizoma peanut	Cool season grass-legume
mixture (BHR)	mixture + 30 lb N acre ⁻¹

Summary grazing trial ADG, stocking rate and gain per area

Cool season 2016 and 2017

Treatment	Stocking rate	ADG	Gain per area
	(steer/acre)	(lb/hd/d)	(Ib/acre/season)*
BG	1.3 a	1.9 a	316 a
BGN	1.3 a	1.8 a	287 a
BG-RP	1.3 a	1.7 a	288 a
SE	0.08	0.15	36

*2016 had 126 days and 2017 had 105 days

Summary grazing trial ADG, stocking rate and gain per area

Warm season 2015, 2016, 2017

Treatment	Stocking rate	ADG	Gain per area
	(steer/acre)	(lb/hd/d)	(lb/acre/season)
BG	1.6 b	0.68 b	125 b 🔍
BGN	1.8 a	0.77 b	151 ab +75%
BG-RP	(1.4 c)	1.23 a	219 a 🧹
SE	0.04	0.15	39

*2015 had 84 days, 2016 had 168 days, and 2017 had 147 days; numbers are averaged across three seasons

Putting all together (cool- and warm-season)

Treatment	Stocking rate	ADG	Gain per area
	(steer/acre)	(lb/hd/d)	(lb/acre/yr)
BG	1.42	1.11	429
BGN	1.54	1.12	436
BG-RP	1.30	1.40	501

*The legume system with 30 lb N/acre/yr produced approximately 70 lb of additional liveweight/acre/yr

Impacts

Field day in South Florida On-farm trial in Wauchula

Field day in North Florida On-farm trial in Marianna

BHL SHERE MEL

NRCS has established a cost-share program to strip-plant Rhizoma Peanut into bahiagrass pastures

Take Home Messages

- Integrating forage legumes into grazing systems have potential to add N to the system via biological N₂fixation, reducing fertilizer costs.
- Legumes increase forage nutritive value and animal performance, reducing environmental impact of N fertilizers.
- Perennial peanut persists well under grazing and is well adapted to our environment.

Take Home Messages

- Different establishment systems can be used, but strip-planting seems to be more effective and reduces establishment costs.
- Recent data support the integration of perennial peanut into grazing systems. We expect that this data will guide policy makers to increase adoption of the system.

Thank you

dubeux@ufl.edu

