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Project Summary: 

 
This project will assess the soil organic carbon (SOC) stocks in 15 beef cattle operations in Florida. 
Within each farm, we will determine the average SOC stock under different land use types. We will 
collect samples from the following land uses in each site: cropping fields, hay and/or baleage fields 
with perennial grasses, intensive grazing areas, pine tree areas, rangelands, and/or low-input areas. 
Additionally, we will predict the spatial variability of SOC stocks in grazing lands in Florida using 
earth observations, spatial covariates, and geospatial artificial intelligence methods. Project goals 
are to quantify the impact of different land uses on SOC stocks across the state and determine the 
most critical factors in controlling SOC stocks in Florida beef cattle operations. The project 
contributes to the spatially explicit ecosystem service assessments for grazing lands in Florida. 
These goals are aligned with the FCA research priorities Ecosystem Services of Grazing lands and 
are also aligned with the specific appropriation language. Mapping the SOC stocked in different 
land uses and locations can help to assess ecosystem services in beef cattle production systems in 
Florida, strengthening the market position of Florida’s Cattle Industry by the aggregated value to 
the final product (beef). In this progress report we present our sampling design and preliminary 
information on the soil assessment across FL ranches. 
Specific aims: 

Our objective with this project is to: 1) assess soil organic carbon (SOC) stocks under 
different land use types in beef cattle farms; 2) assess and predict the spatial variability of SOC 
stocks in grazing lands in Florida using earth observations, spatial covariates, and geospatial 
artificial intelligence methods; 3) determine the most critical factors in controlling SOC stocks in 
Florida grazing lands. The project contributes to the spatially explicit ecosystem service 
assessments for grazing lands in Florida by measuring, modeling and spatially predicting soil carbon 
storage services, addressing the first program area priority about ecosystem services of grazing 
lands, and are also aligned with the specific appropriation language. 

 
2. Significance 

Almost one-half of all Florida agricultural land is involved in cattle production. Beef cattle 
operations in Florida are an important component of the State economy, producing high- quality 
food and generating income for producers and allied industries. Beef production systems in 
Florida are predominantly cow-calf operations, typically producing forages locally to reduce 
transportation costs. Most common forages include perennial C4 grasses such as bahiagrass 
(Paspalum notatum Flüggé) and bermudagrass [Cynodon dactylon (L.) Pers.]. Florida beef cattle 
systems are typically extensive, based on grazing forages. Diets based on forages produce a 
greater proportion of total volatile fatty acids as acetate, generating more hydrogen, which is 
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substrate for methanogenesis (Janssen, 2010). Therefore, it is expected that forage- based 
systems used in the cow-calf phase will generate more methane per unit of carcass weight (CW) 
than feedlot systems with high-grain diets. Rotz et al. (2019) estimated that the cow-calf phase 
is responsible for almost 70% of the GHG emissions in US beef systems. 

Although livestock has been the focus on greenhouse gas (GHG) emissions, especially 
methane released from enteric fermentation, the beef cattle operations based on grazing 
systems have high potential to sequester carbon. Less focus has been given to the potential to 
offset the livestock emissions by sequestering carbon. Soil in grazing lands contains significant 
quantities of carbon and presents opportunities for climate change mitigation through increased 
carbon storage (Adhikari and Hartemink, 2016). Mapping SOC stocks and associated 
uncertainties are fundamental to detect trends of gains or losses in SOC linked to recent and 
future regional and national policy decisions on carbon management strategies. To achieve 
appropriate soil carbon management, it is critical to know where the carbon-rich soil is, and 

how much carbon they hold. Nonetheless, information on SOC stocks distributions on regional 
grazing lands is largely available as discrete point observations, continuous spatial information of 
SOC stocks is still lacking. A key challenge in accurately mapping SOC stocks is the inherent spatial 
variability of soil carbon driving factors. 

Assessing carbon stocks in beef cattle production fields would provide an estimate of the 
potential ecosystem service FL beef cattle systems are providing by accumulating soil organic 
carbon, promoting the Florida beef cattle industry. The more sustainable beef production can 
leverage the meat consumption and aggregate market value to the final product in Florida. 

 
3. Approach 

3.1. Soil organic carbon survey data 

We will collect soil samples from 15 Florida beef cattle farms across the State. Farm 
selection will be based on geographical location and the willingness of the beef producer to 
participate in the project. We will try to select farms representing North, Central, and South 
Florida. We will keep the sites as uniform as possible regarding soil type using a web soil survey 
from USDA. Within each farm, we will collect samples from the following land uses: cropping 
fields, hay and/or baleage fields with perennial grasses, grazing areas on pastureland, pine tree 
areas, rangelands, and/or low-input areas. Each farm will be considered a block. 

Soil samples will be collected using the Wintex® 3000 soil probe adapted to a RTV vehicle. 
On each land use type, we will collect a composite sample formed by 20 subsamples using a 
random transect in a representative area of the field. Soil samples will be collected down to 3 ft. 
depth, at the following soil layers: 0- to 6-, 6- to 12-, 12- to 36-inch layers. Soil cores will also be 
used to determine soil bulk density to estimate soil organic carbon stock. In addition, soil texture 
of each site will be determined within each layer. Soil organic C will be determined after acid 
fumigation to remove carbonates prior to total organic carbon analyzes (Harris et al., 2001). Soil 
samples from each layer will be ball milled in a Mixer Mill MM 400 (Retsch) for 9 min at 25 Hz 
and analyzed for total carbon using a CHNS analyzer (Vario Micro Cube) and the Dumas 
combustion method. Soil carbon stock of each land-use type within each farm will be estimated 
by using soil bulk density and soil organic C concentration within each soil layer. 

Statistical analyses will be performed using proc mixed from SAS where land use type will 
be considered a fixed effect and farm site will be random effect. Soil layers will be considered 
repeated measures in space. We will analyze SOC stocks down to the entire soil profile and by 
layer. 



3.2. Soil organic carbon spatial prediction 

For the spatial prediction of SOC, several legacy soil data will be evaluated, harmonized, and 
integrated into a spatial database to provide data for model training, and for mapping SOC stocks 
once the model is developed. These include soil sample data from the World Soil Information 
Service (WoSIS) (Batjes et al., 2017), the Florida Soils Characterization Database, and the Florida 
Carbon Project by the Environmental Pedology Laboratory of the Soil Science Department, 
University of Florida. 

Based on the SCORPAN (S: Soil, C: Climate, O: Organism, R: Relief, P: Parent material, A: 
Age, and T: time) framework in digital soil mapping (McBratney et al., 2003), five major factors 
have been identified to represent the controls on SOC stocks, including vegetation, topography, 
climate, land use and soil properties. The spatial covariates used in the study include Sentinel 2 
surface reflectance and spectral indices, topographic variables such as digital elevation model 
(DEM) derivatives - slope, aspects, terrain roughness; climatic variables including temperature, 
precipitation; land use and land cover types; and soil properties including texture and soil type. 
We will select the most effective spatial covariates for modeling based on the recursive feature 
elimination (RFE) analysis. 

We will use the Random Forest with Residuals Kriging (RFRK), a hybrid machine learning 
and geostatistical model for spatial prediction of SOC stocks (Figure 1). Random forest (RF) is a 
machine learning method that works well with high-dimensional problems and allows for 
nonlinear relationships between predictors. Kriging is a classical geostatistical model used to 
estimate the residuals so that the local error variance is minimized. Studies have shown that a 
hybrid model that combines the two models can increase the accuracy of SOC spatial predictivity, 
because it considers spatial autocorrelation between soil sampling points compared to non-
spatial predictive model (Rostaminia et al., 2021). We will assess map accuracy using the 
coefficient of determination (R2) and root mean squared error (RMSE) and create an uncertainty 
map of SOC stocks distribution by the Quantile Regression Forests method (Meinshausen and 
Ridgeway, 2006). 

Figure 1. Methodological flowchart for modeling and mapping SOC stocks in Florida grazing 
lands 



4. Results 

5.1 Sampling design 

 
Conditional Latin Hypercube Sampling 

The Conditional Latin Hypercube Sampling (cLHS) is considered as a robust data-driven 

sampling strategy for selecting a statistically representative sample of a landscape based on 

environmental variables and their multivariate distribution. This stratified sampling procedure 

yields samples from multivariate feature space such that the multivariate distribution and 

correlation among auxiliary features are preserved. The algorithm is described in detail by 

McBratney et al., 2003. In this study, we used cLHS to select 15 georeferenced cattle farm 

locations for soil sampling across potential grazing lands in Florida, considering the spatial 

variability of topographical, climatic and land use patterns across the state. Due to practical 

operational restrictions of this sampling method in digital soil mapping, some selected points by 

cLHS may not be accessible in the field, we therefore also considered nearby geolocations to 

obtain alternative samples with a lower cost in time and labor.  

We define potential grazing lands as any vegetated land areas, such as grasses and grass-like 

plants, forbs or shrubs that are grazed or has the potential to be grazed by livestock and wildlife 

(Allen et al., 2011). We reclassified land use and land covers from the Multi-Resolution Land 

Characteristics National Land Cover Database (MRLC NLCD) and the USDA NASS Cropland 

Data Layer, by which we assigned shrub/scrub, grassland/herbaceous, pasture/hay, and various 

areas of crops, such as sorghum, barley, wheat, and other small grains as potential grazing land 

use and land cover.  

We excluded non-grazing lands in the cLHS sample selection process. Furthermore, a Digital 

Elevation Model (DEM) was produced for Florida from the USGS 3D Elevation Program (3DEP) 

which provides high-quality elevation data derived from LiDAR point clouds. Specifically, the 

USGS 3DEP 10m National Map Seamless (1/3 Arc-Second) was retrieved from Google Earth 

Engine (GEE). The DEM forms the basis for the calculation of four terrain attributes: (1) Slope; 

(2) Aspect; (3) Roughness; and (4) Topographic Position Index. Additional climatic and soil 

variables were extracted, including 30-year average of annual total precipitation and monthly 

mean temperature obtained from the PRISM Long-Term Average Climate Dataset Norm91m on 

GEE, and Hydrologic Soil Groups based on estimates of runoff potential from the USGS NRCS 

Gridded National Soil Survey Geographic Database (gNATSGO). All environmental data were 

resampled to 30-meter based on bilinear interpolation. The cLHS algorithm was performed in R 

using the clhs package. 

Figure 1 shows the spatial distribution of the 15 selected georeferenced points for soil sampling 

by cLHS. It is notable that the points are spatially distributed throughout the state, covering 

northern, central, and southern Florida. Figures 2 and 3 show the distribution of environmental 

data among the population (the entire state of Florida) and sampled locations (selected points by 

cLHS). The shape of the histograms and boxplots are similar, with minor difference in mean and 

median. It is therefore suggested that the cLHS method can select statistically representative 

points in both geographical space and feature space, while preserving multivariate data 

distribution.  

 



 
Fig 2. Spatial distribution of the selected soil sampling points by cLHS. 
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Fig 3. Distribution of DEM-derived variables among the population (the entire state of Florida) 

and sample (selected points by cLHS). (a) slope; (b) aspect; (c) roughness; (d) topographic 

position index. 
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Fig 4. Distribution of climate and soil attributes among the population (the entire state of Florida) 

and sample (selected points by cLHS). (a) annual total precipitation; (b) monthly mean 

temperature; (c) soil hydrological groups. 

 

 

 

 

 

 

 

 



5.2 Soil organic carbon and nitrogen stocks 

 
Twenty farms near the previously defined locations were sampled, including up to five 

different land uses within each farm (Figure 4). 

 

Figure 4– Soil sampling map to access soil organic carbon in beef cattle operations across Florida.     
 

 

The total soil organic carbon and nitrogen stocks across Florida beef cattle farms are 
presented in Table 1. 

 
 

Table 1 – Cumulative soil organic carbon and nitrogen stocks across Florida beef cattle farms by soil 
depth.  

 Crop Grazing Hay/Baleage 
Low-
Input Native/Rangeland 

Pine-
tree 

P-
value 

SOC stock (Mg 
ha-1)        
0-6 in 9.87 12.28 12.74 13.31 16.12 10.30 0.450 

0-12 in  18.82 26.99 24.59 23.56 26.93 22.34 0.851 

0-36 in 35.5 46.0 47.2 36.8 40.6 40.3 0.768 

N stock (Mg ha-1)        
0-6 in 4.19 4.24 4.23 4.08 4.22 4.29 0.659 

0-12 in  8.06 8.13 8.09 8.00 8.29 8.38 0.442 

0-36 in 15.6 15.7 15.5 15.7 16.1 16.3 0.457 



Soils of Florida beef cattle farms are storing, on average, 41 Mg ha-1 of SOC and 16 Mg 
ha-1 of N with no statistical difference among land uses. Deep soil layers (12-36 in) are storing 42 
and 48% of the total SOC and N, respectively. The spatial distribution of SOC in Florida is currently 
under analysis for further reporting. 

 

5. Outcomes and their potential benefits 
A comprehensive assessment comparing different land uses in Florida beef cattle farms 

will provide information on how much carbon is potentially stored, as well as the potential of 
beef cattle operations to mitigate greenhouse gas emissions, promoting the Florida beef cattle 
industry. Additionally, the project will generate baseline SOC stocks and uncertainty maps for 
grazing lands in Florida. The maps generated in this study will provide a deeper understanding 
of the spatial distribution and uncertainty of SOC stocks estimates. By pinpointing potential areas 
with hotspots and coldspots of soil carbon storage services, these maps will enable policy makers 
and land managers to target critical locations requiring in-depth soil carbon assessments and 
prioritization to restore, preserve, and, where necessary, enhance soil carbon storage, a critical 
ecosystem service provided by grazing lands. 

The maps could also be used as extension materials that support agricultural and 
environmental applications at farm, county, and regional levels. We foresee that the maps could 
be updated with data from future soil sampling and be made interactive to meet stakeholder 
demands in the future. Furthermore, our replicable and spatially explicit methodology improves 
rapid SOC stocks mapping over large areas, given the nearly global availability of earth 
observation data and spatial covariates. The presented geospatial artificial intelligence-based 
methodology has great potential to be used in future soil-related ecosystem service accounting 
and inventories, providing the necessary spatial information for economic valuation of 
ecosystem services. 

Results of this proposal will be disseminated in field days organized at each location. We 
will also deliver the results in extension reports and scientific articles in peer-reviewed journals 
and present at the FCA Annual Convention in 2024. 
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