Southeast Dairy Producer's Check-Off Program Research Summary

Effect of Nitrogen and Sulfur Applications on Silage Corn Yield and Quality

Emma Matcham, Assistant Professor, UF-Agronomy, Marcelo Wallau, Forage Extension Specialist, UF-Agronomy, Diwakar Vyas, Assistant Professor, UF-Animal Sciences

Funding Year: 2023

Amount Awarded: \$16,834

Executive Summary

This trial tested 3 rates of nitrogen (N) with or without late-season sulfur (S) application on silage corn. Overall, we were surprised to see that the higher N rate didn't provide yield or quality benefit and there was no interaction between the impact of N and late-season S. Our data also emphasizes the importance of late-season S applications (V10-R1) for silage corn produced on fields without dairy effluent application; on those fields that don't receive effluent and/or manure, there is a benefit to choosing N or K sources that contain S, or supplementing S using gypsum (calcium sulfate).

Implications

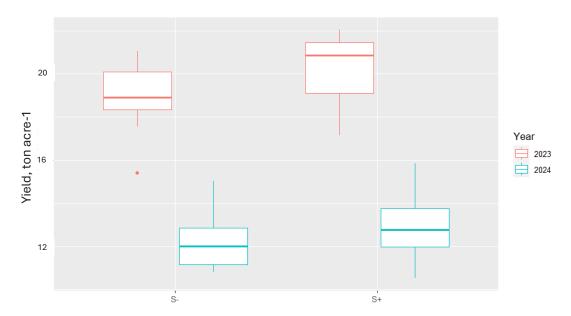

Increasing N rates above the current UF/IFAS recommendations is unlikely to increase yield or nutritive value. The strong impact of S on yield indicates the importance of late-season S applications (growth stages V10-R1) for silage corn produced on fields without dairy effluent application; on those fields that don't receive effluent and/or manure, there is a benefit to choosing N or K sources that contain S, or supplementing S using gypsum (calcium sulfate).

Table 1: Treatments and their respective N and S rates, and timing of application.

Treatment	Total N Rate	Total S Rate	At- Plant S	VT S	At- Plant N	V4 N (10%)	V8 N (15%)	V10 N (20%)	V12 N (25%)	VT N (20%)	R1- R2 N (10%)
Standard N	270	5	5	0	16	25.4	38.1	50.8	63.5	50.8	25.4
Reduced N	216	5	5	0	16	20	30	40	50	40	20
Elevated N	324	5	5	0	16	30.8	46.2	61.6	77	61.6	30.8
Standard N w/ S	270	20	5	15	16	25.4	38.1	50.8	63.5	50.8	25.4
Reduced N w/ S	216	20	5	15	16	20	30	40	50	40	20
Elevated N w/ S	324	20	5	15	16	30.8	46.2	61.6	77	61.6	30.8

Methods

A small plot trial was established at the Plant Science Research and Education Unit in Citra, FL in 2023 and 2024. Treatments consisted of the recommended standard N rate (270 lbs of N/A throughout the season), reduced N rate (216 lbs N/A), and elevated N rate (324 lbs N/A). All tested N rates were tested both with and without late-season sulfur (0 or 15 lbs S/A). Plots were arranged in a complete randomized block design with 5 replicates in 2023 and 6 replicates in 2024. Yield and nutritive value were tested at the time of harvest, and samples were also ensiled to further measure forage characteristics.

Figure 1. Yield of silage corn at harvest, as affected by the main effect of S application (15 lb are-1 of gypsum) at tasseling during two growing seasons. No Sulfur: S-; With Sulfur: S+.

Results

Yields were comparable between the standard and elevated N rate. Plots with sulfur had higher yields than plots without sulfur in both years. We are still waiting on nutritive value results from the lab for 2024, but in 2023 higher N rates resulted in slightly higher crude protein levels, and S application did not impact protein levels. Fiber, lignin, estimated milk yield, and other parameters did not vary based on N or S.

References of Published Work

The 2023 data from this trial was presented by Dr. Angel Zubieta at the Tri-Societies Annual Meeting. A manuscript detailing all results is in preparation and will be submitted later this fall.

