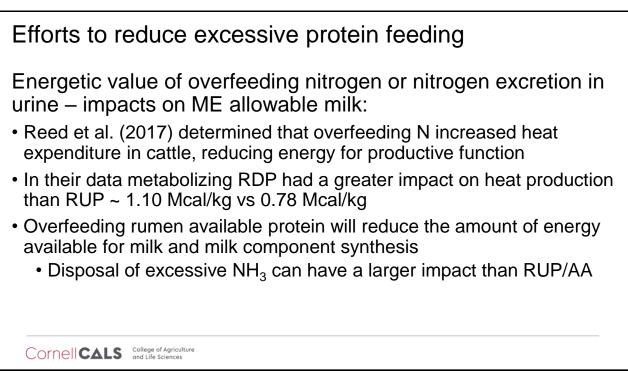


Today's Talk

- Cows are changing and we need to be conscious of this
- **Protein synthesis** is required for lactose synthesis, fatty acid synthesis and milk protein synthesis
- The concept of N efficiency is energy dependent and, in a ruminant, might be related more to urinary N excretion than intake to milk N
- Thus, the concept of N efficiency is not just related to milk protein output, it is related to energy corrected milk as all components require N

Efficiency of Use of Intake Nitrogen


- This is a tough metric for ruminants since they require non-protein N for rumen function
- When this is described for non-ruminants the N-currency is amino acids
- On farm N efficiencies (milk N:feed N) range from 20 to 32%
- Theoretical efficiency limit 40 to 45% in lactating dairy cattle (Van Vuuren and Meijs, 1987; Hvelplund and Madsen, 1995)
- Practical limit is ~38 to 40% (high cow groups are achieving this)
- Although it is an ambiguous metric, it can be useful if extended to whole body N metabolism

	ENU (g milk N/	100 g N intake)	3.5% Fat correct	ted milk (kg/day)
	Low	High	Low	High
EU data set				
ENU (%)	21.0	32.0	24.8	28.7
3.5% FCM (l/day)	26.8	31.2	22.2	35.3
Forage (%)	66.5	56.9	67.4	52.6
Forage CP (%)	20.0	14.8	16.1	14.7
Forage NDF (%)	48.9	59.4	50.5	50.5
DMI (kg/day)	17.9	18.9	15.3	21.1
US data set				
ENU (%)	22.0	32.8	25.5	29.8
3.5% FCM (l/day)	31.8	38.2	27.0	41.6
Forage (%)	53.4	52.6	56.2	51.9
CP (%)	17.9	15.4	15.6	17.4
NFC (%)	31.8	38.2	39.2	42.8
DMI (kg/day)	23.2	23.8	21.0	24.3

There are cows within groups achieving the theoretical limits of N efficiency

Hardie Family Farm, Lansing NY High group average production: 120 ± 35 lb/d Average DMI: 60.2 lb/d, 15.8% CP Average N efficiency: 38% (productive N:intake N)

Cows at high end of production: ~168 lb/d milk At estimated intake, N efficiency: 41%

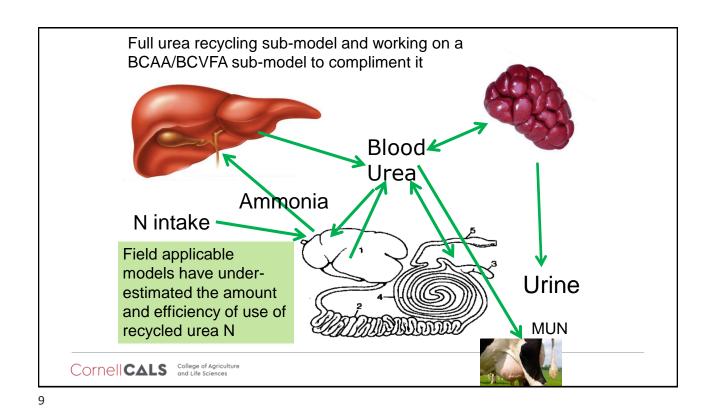
Efforts to reduce excessive protein feeding

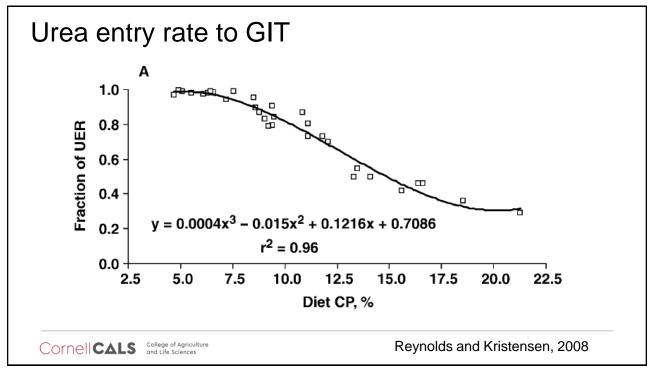
Morris et al., (2021) demonstrated that increasing urinary nitrogen (UN) excretion decreased metabolizable energy content of the diet as calculated from digestible energy:

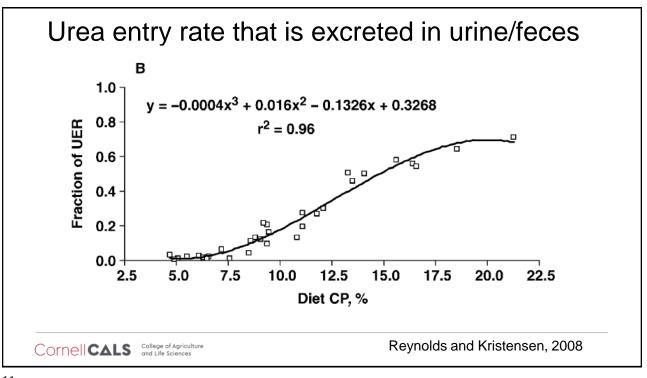
- Urinary energy (UE) output was 1,390 to 3,160 kcal and UN was 85-220 g/d (20 to 60% of nitrogen intake)
- The best fitting equation was UE =14.6 ± 0.32 x UN (UE is kcals/g and UN is g/d)
- Urinary nitrogen needs to be accounted for when refining the calculation of dietary ME and lower nitrogen intake

CornellCALS College of Agriculture and Life Sciences

Efforts to reduce excessive protein feeding

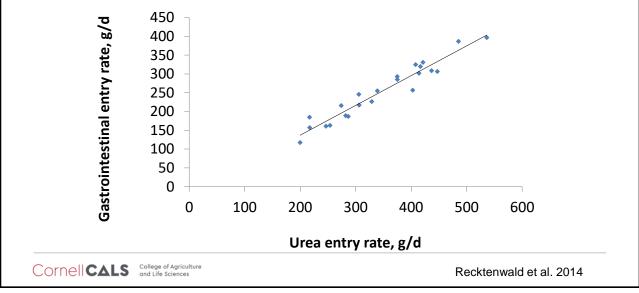

- Nichols et al. (2022) review on urea recycling capabilities in ruminants:
 - Levels of rumen degradable protein should be optimized to capture ruminally recycled nitrogen → Improvements in nitrogen use efficiency
 - Excessive dietary urea feeding (>1% DM) elicits deleterious effects on animal (hypophagic effects, ammonia toxicity) and may lead to sequestered urea recycling
 - Increases in post-ruminal protein supply should help improve endogenous urea supply through hepatic production

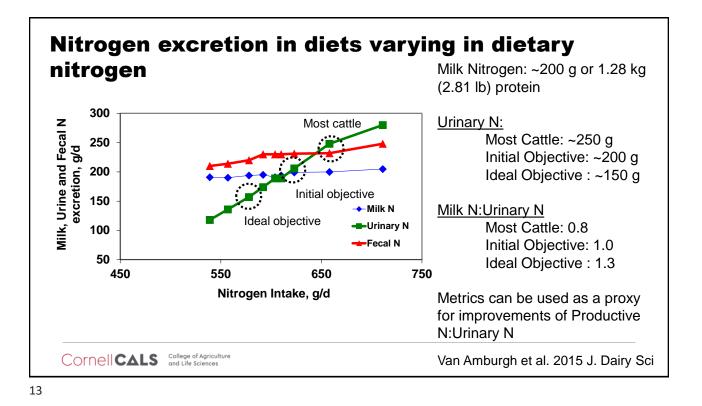


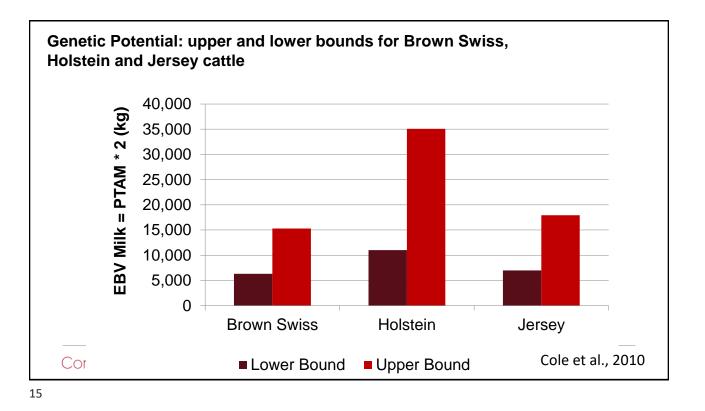

Review: Unlocking the limitations of urea supply in ruminant diets by considering the natural mechanism of endogenous urea secretion K. Nichols*, I.P.C. de Carvalho, R. Rauch, J. Martín-Tereso Traw Martian 8:01, P.D. Bur 228, 300 C. Amerijant, the Kehrlands.

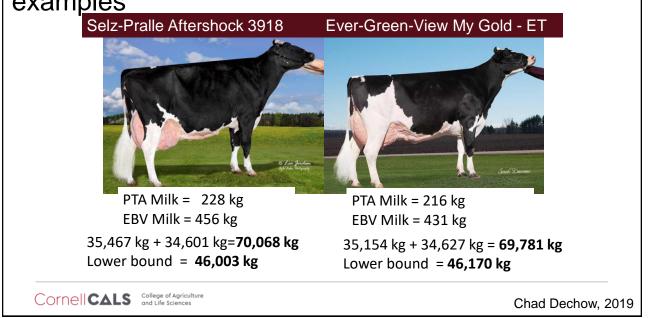
Formulating closer to nitrogen and amino acid requirements, reducing urinary N excretion, and reliance on endogenous urea recycling leads to improvements in energetic and nitrogen efficiency

CornellCALS College of Agriculture and Life Sciences






Urea-N entry rate and gastrointestinal urea-N entry rate for each experimental unit across all dietary treatments differing in dietary CP (15.3% and 16.7%), starch, and Rumensin inclusion fed to dairy cattle and continuously infused with ¹⁵N¹⁵N urea-N.



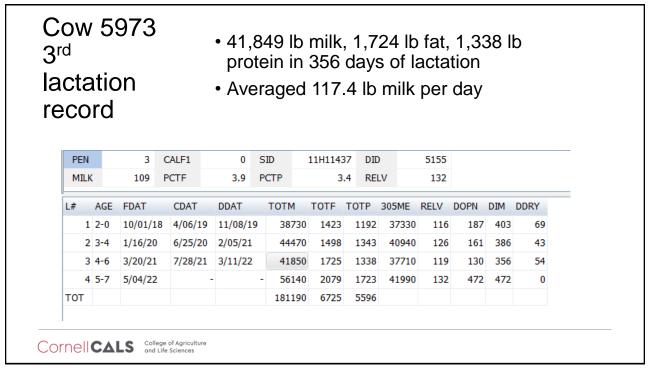
Improving energetic efficiency through nitrogen reduction Moving from "most cattle" from 0.7:1.0 on productive N:urinary N to a 1:1 ratio results in a 660 g- 610 g = 50 g reduction in intake N and a proportional reduction in urinary N (1.5 lb soybean meal equivalent)

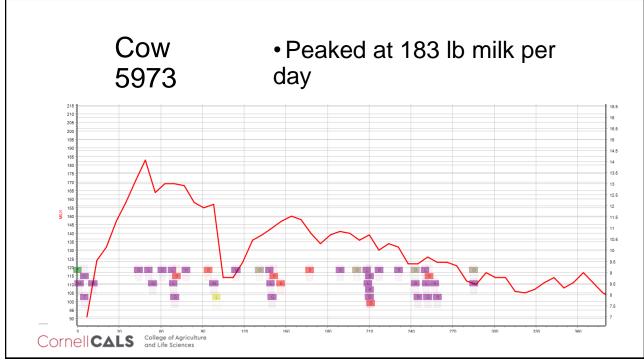
- Using the equation from Morris et al. 2021, reducing N excretion by 50 g would result in a retention of energy of 0.73 Mcals
 - · Could be partitioned to milk or milk components
 - Reduce the environmental impact of milk production
 - Reduce feed costs improving IOFC
 - Results in an improvement in energetic efficiency of cattle

What are the limits? Two world record holders as examples

Per	specti	ve											
ca •	sed or pacity There perforr 186	for m are c ming	ilk yie cows c	eld fo on co s that	r Hol: mme are p	stein rcial peak	is is far ting	app ms i in m	oroxi n Co iilk y	imat entr	tely al N	[,] 75,0 VY in	00 lb high
• My	v persp	ectiv	ve is th	nat m	any o	COWS	s in	a he	rd h	nave	e th	is cap	oacity.
de	ads to tracts t mmuni	from	or fail	s to "	turn	on" t							t either that
Corr		S College and Life	of Agriculture Sciences										
,													
4 th	w 602 lactati ord	-	prot	tein ir	lb mil 367 erage	days	ofl	actat	ion			n	
	PEN	4	CALF1	7980	SID	11H116	65 D	ID	5252	2			-
	MILK	89	PCTF	4.0	PCTP	:	3.3 R	ELV	131	L			_
	L# AGE	FDAT	CDAT	DDAT	тотм			305ME				DDRY	
	1 1-10 2 2-9		11/15/18 10/10/19		21030		698	31530 37990					
	3 3-8		10/16/20				1146						
				7/22/22	41150	1739	1370	38760	120		367	53	

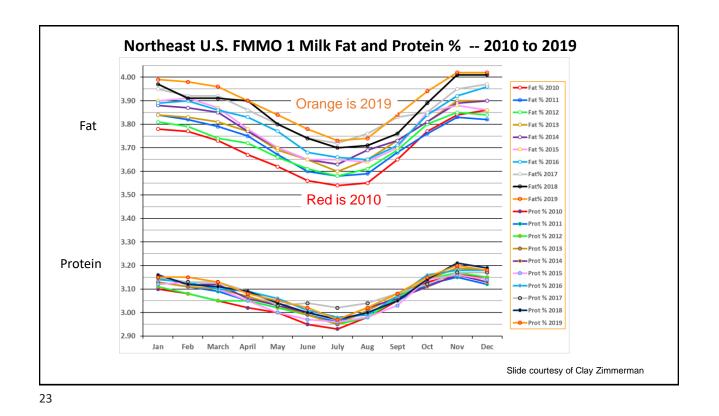
- 41570 1669 1285 41890 131

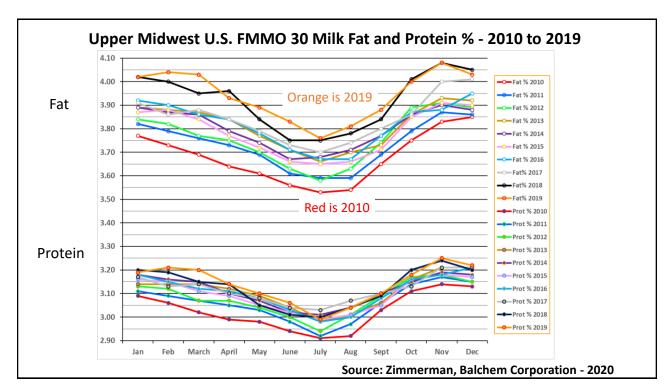

167930 6881 5451

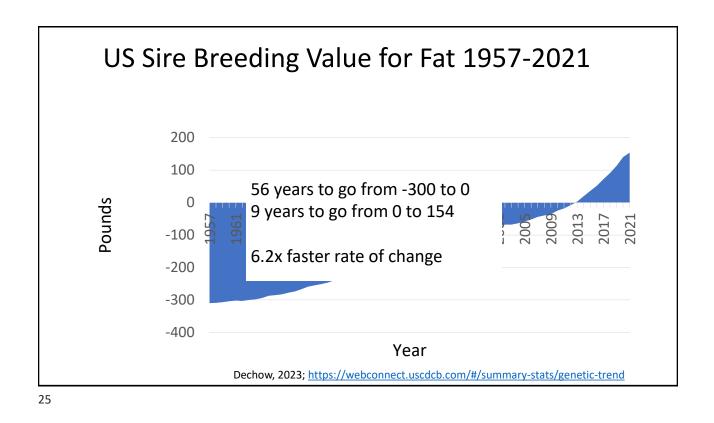

149 340

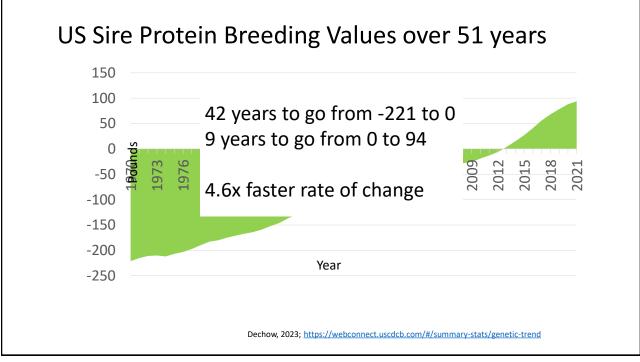
0

тот


5 5-10 9/13/22 2/09/23



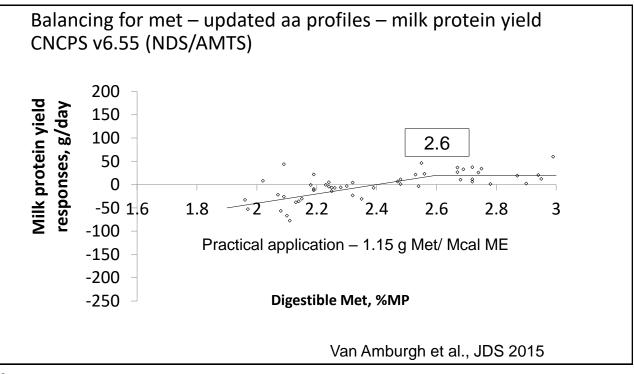



3r	d	638 tion	-		7,060 vera <u>c</u>								acta	•	
PEN		3	CALF1		7962	SID	11	H1181	15 D1	ID		5582			
MIL	к	130	PCTF		5.4	PCTP		3	.5 RI	ELV		119			
L#	AGE	FDAT	CDAT		DDAT	тотм	то	TF	тотр	305N	1E	RELV	DOPN	DIM	DDRY
1	1-10	7/04/19	9 10/03	/19	5/08/20	3057	' 0 1	1318	997	42	570	136	91	309	56
2	2 2-10	7/03/20	0 10/23	/20	6/04/21	3910	0 1	1747	1322	439	940	136	112	336	51
3	3-11	7/25/2	1 2/13/2	22	9/02/22	4706	i0 2	2144	1653	41	870	127	203	404	78
4	5-2	11/19/2	22	-		- 3158	10	1325	1015	38	090	119	273	273	C
тот						14831	0 4	5534	4987	,					

			4291 ctation		prote	b milk in day lao		•	y — 4%	6 Fat	, 3.23	8%	
PEN		3	CALF1	0	SID	11H1	462	DID		5281			
MILK	C	120	PCTF	4.5	PCTP		3.4	REL	V	126			
L#	AGE	FDAT	CDAT	DDAT	тот	м тот	FΤ	отр	305ME	RELV	DOPN	DIM	DDRY
1	1-11	11/02/1	.8 2/19/19	9/27/19	34	690 11	81	1062	41900	134	109	329	61
2	2-11	11/27/1	9 4/25/20	12/04/2	0 42	150 15	36	1303	40830	125	150	373	59
-	4-1	2/01/21	8/29/21	3/25/22	51	600 20	62	1669	42410	134	209	417	64

Swine Requirements: Lysine as a function of Energy and Other Essential AA as function of Lysine

		Gro	wing pigs	weight rang	e, lb		So	ws ⁴
SID amino acids ¹	15 to 25	25 to 55	55 to 130	130 to 175	175 to 220	220 to 285	Gestating	Lactating
Lysine, % ²	1.35	1.25	1.08	0.88	0.78	0.70	0.60	1.05
Amino acid to lysine ratio,					_			
Methionine	28	28	28	28	28	28	28-29	28-29
Methionine Methionine + Cysteine	28 56	56	56	56	57	58	68-70	53-54
	28							
Methionine Methionine + Cysteine	28 56	56	56	56	57	58	68-70	53-54
Methionine Methionine + Cysteine Threonine	28 56 62	56 62	56 62	56 62	57 63	58 64	68-70 74-76	53-54 63-64


¹Minimum levels based on the NRC (2012) ingredient loading values.

²Minimum lysine levels considering a diet with 1,150 kcal NE/lb for growing pigs, 1,130 kcal NE/lb for gestating sows, and 1,160 kcal NE/lb for lactating sows.

³Minimum ratios to achieve approximately 95% of maximum growth performance. Minimum ratios of threonine, tryptophan, isoleucine, and valine can be greater depending on diet formulation.

⁴Data on amino acid requirements for contemporary sows is limited.

- These are adjusted based on genotype thus the relationship between Lysine and energy changes with increased capacity for growth
- What about cows and their increased capacity for components?

Optimum Supply Of Each EAA Relative To Metabolizable Energy – CNCPS v7.0 – Approach incorporates all productive functions

AA	R ²	Efficiency from our evaluation	Lapierre et al. (2007)	g AA/ Mcal ME	% EAA
Arg	0.81	0.61	0.58	2.04	10.2%
His	0.84	0.77	0.76	0.91	4.5%
lle	0.74	0.67	0.67	2.16	10.8%
Leu	0.81	0.73	0.61	3.42	17.0%
Lys	0.75	0.67	0.69	3.03	15.1%
Met	0.79	0.57	0.66	1.14	5.7%
Phe	0.75	0.58	0.57	2.15	10.7%
Thr	0.75	0.59	0.66	2.14	10.7%
Trp	0.71	0.65	N/A	0.59	2.9%
Val	0.79	0.68	0.66	2.48	12.4%
	•	quirements 14.9% quirements 14.7%		· · ·	

29

Amino Acids and De Novo FA Synthesis

- Lys increased enzymes related to de novo FA synthesis (ACS, ACC, FAS) through upregulation of FABP and SREBP1 (Li et al., 2019)
 - Further increased when supplemented with palmitic acid and oleic acid
- Additionally, Met and Leu increase expression of SREBP1– important regulator of enzymes for milk FA synthesis (Li et al., 2019).
- Arg increased de novo and mixed FA synthesis and expression of ACC, SCD, DGAT1 (Ding et al., 2022)

Fatty Acid Synthetase (FAS)

- FAS synthesizes de novo FA by elongating FA carbon chain
- Active sites with AA essential for function and transfer of intermediates during elongation of de novo FA
 - His, Lys, Ser, Cys (Smith et al., 2003; Wettstein-Knowles et al., 2005)
- FAS expression decreased in His- and Lys-deficient human liver cell medium (Dudek and Semenkovich, 1995)
 - This was reversible when His and Lys were reintroduced
- Expression of FAS increased by adding both NEAA and EAA compared each treatment individually (Fukuda and Iritani, 1986)
 - FAS complex likely has requirement for both types of AA

31

Review of recent experiment evaluating nutrient use efficiency
Dose titration of rumen modifier – nothing to do with amino acids, except the diets were formulated using the latest information related to AA levels
192 cows were used in a replicated pen study
16 cows per pen, milked 3x per day
Prior to the experiment, the cows were producing 42 kg, 4.1% fat and 3.1% true protein

Benoit et al., JDS abstract 2022

	DM kg
Corn silage	8.85
Haylage - MML	4.90
Corn ground fine	4.54
SBM	1.72
SoyPass	1.45
Citrus Pulp	1.13
Wheat midds	1.13
Dextrose	0.40
Blood meal	0.25
Bergafat 100	0.15
Energy Booster 100	0.15
Sodium bicarb	0.10
Smartamine M	0.03
Smartamine ML	0.03
Levucell SC	0.01
Vitamins and Minerals	0.41
Total	25.27

Rumen modifier study diet cl	hemistry – formulated
DM, %	45.1
СР, %	15.75
Sol CP, %CP	31.5
aNDFom, %	31.6
Sugar, %	4.92
Starch, %	26.33
EE, %	4.4
ME, mcal/kg	2.65
ME, Mcal @25.5 kg DMI	68
Forage, % DMI	54.3
Forage, %BW	0.93
Methionine, g/Mcal ME	1.19
Lysine, g/Mcal ME	3.03
Methionine, g	82
Lysine, g (methionine x 2.7)	222

Diet/Intake related information – Methionine and Lysine levels

Cows consumed approximately 71-72 mcals per day

Methionine @ 1.19g/Mcal = 1.19* 71.5 = 85 g

Lysine @ 2.7 times Met = 85g * 2.7 = 229 g

1.71

2.9

693

9.13

Histidine similar to Methionine

Feed Efficiency,

ECM/feed

BCS

BW, kg

PUN, mg/dL

These levels are what we consider the true requirement to be based on the last 10 years of research

Meeting the requirements should improve energetic efficiency and milk component yields

35

lilk, energy correcte our levels of rumen r			ciency ai	nd body	weigł	nt of cov
		Treat				
Item	0	11g	14.5g	18g	SEM	P-Value
DMI, kg/d	26.9	26.8	26.7	27.7	0.31	0.21
Milk Yield, kg/d	39.1	39.9	39.6	39.6	0.4	0.33
ECM, kg/d,	45.9	46.9	47.1	46.8	0.51	0.11

1.76

3.0

693

9.19

1.70

2.9

692

8.88

0.02

0.2

2.3

0.16

0.93

0.7

0.96

0.36

Benoit et al., 2022

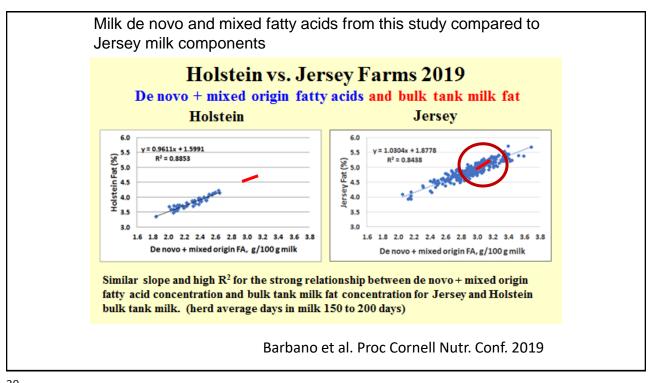
1.74

3.1

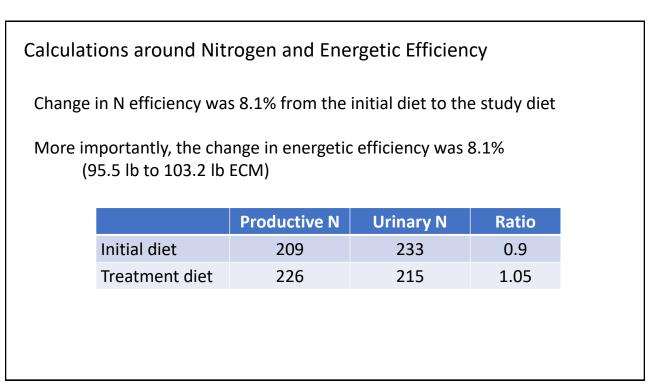
690

9.23

Milk fat, protein and urea nitrogen of cows fed four levels of rumen modifier


		Trea	atment			
ltem	0	11g	14.5g	18g	SEM	P-Value
DMI, kg/d	26.9	26.8	26.7	27.7	0.31	0.21
Milk Yield, kg/d	39.1	39.9	39.6	39.6	0.4	0.33
ECM, kg/d,	45.9	46.9	47.1	46.8	0.51	0.11
Milk fat, %	4.60	4.67	4.72	4.67	0.05	0.2
Milk fat, kg	1.79	1.83	1.85	1.83	0.02	0.02
Milk true protein, %	3.35	3.38	3.37	3.39	0.01	0.07
Milk protein, kg	1.30	1.33	1.32	1.33	0.01	0.15
MUN, mg/dL	8.92	10.20	9.65	9.56	0.12	<0.01
					Bend	oit et al., JD

37


	<i>c</i> , , , , , , , , , , , , , , , , , , ,		
Fatty acid pro	file of milk from cov	ws fed four levels of rur	men modifier

		Trea	tment			
Item	0	11g	14.5g	18g	SEM	P-Value
De novo fatty acid, g/100g	1.131	1.157	1.168	1.156	0.01	0.03
De novo fatty acid, kg	0.44	0.45	0.46	0.46	0.005	0.32
Mixed fatty acid, g/100g	1.856	1.881	1.918	1.897	0.02	0.02
Mixed fatty acid, kg	0.73	0.74	0.75	0.75	0.009	0.39
Preformed fatty acid,	1.34	1.33	1.38	1.35	0.02	0.23
g/100g						
Preformed fatty acid, kg	0.52	0.52	0.54	0.53	0.007	0.29
Fatty acid chain length	14.6	14.5	14.5	14.5	0.01	0.83
Double Bonds	0.23	0.23	0.23	0.23	0.002	0.42

Benoit et al., 2022

Effect of Rumen Protected Methionine and Lysine on Energy Corrected Milk Yield (and don't forget about Histidine...)

- 144 cows assigned to a replicated pen study
- Three levels of rumen protected Methionine
- Lysine was held constant at 3.2 g metabolizable AA per Mcal ME
- Histidine was similar to the highest Methionine level
- Methionine was fed at 0, 1.05 and 1.19 g metabolizable Met per Mcal ME
- 14-day covariate, 84-day treatment; 75% multiparous, 25% primiparous cattle per pen

Danese et al. unpublished

144 cows, replicated pen, 16 cows/pen	Diet, g Metabolizable Met/Mcal ME				
Parameter	0.86	1.05	1.19	SEM	P value
Body Weight, kg	698	705	701	3.3	0.30
Delta BW, kg	16.4	23.9	9.8	6.8	0.35
Dry Matter Intake, kg	26.4	26.5	26.1	0.3	0.59
Milk Yield, kg	44.6	45.3	44.8	0.38	0.38
ECM, kg	48.8 ^a	50.2 ^b	50.4 ^b	0.44	0.02
ECM to DMI	1.87	1.88	1.92	0.017	0.21
Milk True Protein, g/100g Milk	3.09ª	3.24 ^b	3.34 ^c	0.010	< 0.01
Milk True Protein, kg	1.38ª	1.46 ^b	1.49 ^b	0.011	< 0.01
Milk Fat, g/100g Milk	4.21 ^a	4.25 ^a	4.36 ^b	0.026	< 0.01
Milk Fat, kg	1.88	1.92	1.94	0.023	0.16
MUN, mg/dL	11.20	11.44	11.09	0.120	0.12

	Diet, g Metabolizable Met/Mcal ME					
Milk Fat, g/100g Milk	0.86	1.05	1.19	SEM	P value	
De novo	1.14ª	1.17 ^b	1.20 ^b	0.010	< 0.01	
Mixed	1.65×	1.67 ^{xy}	1.70 ^y	0.015	0.07	
Preformed	1.16	1.15	1.19	0.013	0.20	
Milk Fat, % Milk Fat						
De novo	28.79ª	29.33 ^b	29.34 ^b	0.088	< 0.01	
Mixed	41.83	41.61	41.56	0.148	0.40	
Preformed	29.33	29.08	29.07	0.166	0.43	

Diet, g Metabolizable Met/Mcal ME						
	0.86	1.05	1.19	SEM	P value	
N Intake, g	669	671	673	5.9	0.91	
Productive N, g	235ª	241 ^b	250 ^c	1.7	< 0.01	
Urinary N, g	193 ^y	189 ^{×y}	181 [×]	3.6	0.09	
Productive:Urinary N	1.22	1.28	1.38			

At the 1.19 supplementation level, the difference between milk volume and ECM was 9.4 to 13 lb demonstrating a 4% increase in energetic efficiency

In this study, between the same treatments, the increase in N efficiency was 6.4%

Observations from these studies

- Milk components can be greatly enhanced even in mid-lactation if requirements for various nutrients are met
- Data demonstrate that meeting the amino acid requirements can enhance energetic efficiency as much or more than N efficiency
- Holstein cattle can produce milk fat like Jersey cattle if fed an appropriate diet meeting the requirements
- These cows are more environmentally efficient because they are producing more components per unit of intake reducing the intensity of greenhouse gas emissions

45

Some Steps to Optimize Energetic Efficiency

- Determine the most limiting nutrient energy or protein do cows and model agree?
- Evaluate the rumen N balance and urinary N excretion if high, then work to reduce the soluble protein – within CNCPS rumen NH₃ balance between 120-140%
- If grams MP is in excess, then decrease MP from feed in small increments
- Once you have ME and MP in balance and are happy with rumen N balance, focus on AA
- Met use 1.15-1.19 g MP Met per Mcal ME (CNCPS v6.55)
- Lys maintain a Lys:Met of ~ 2.7:1
- Pay attention to aNDFom digestibility and allocate the highest digestibility forages to the fresh and high cows
- Don't overfeed fatty acids, add some sugar and use high digestible aNDFom

Thank you for your attention and for all the students who helped develop this work and the sponsors who keep it going.

