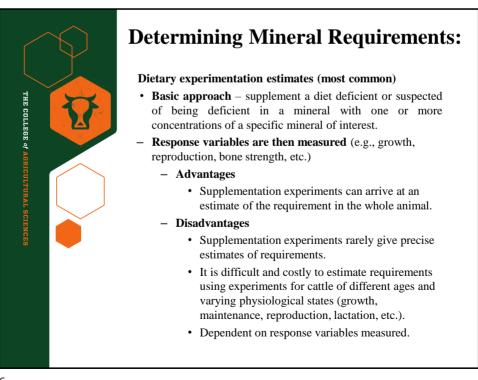
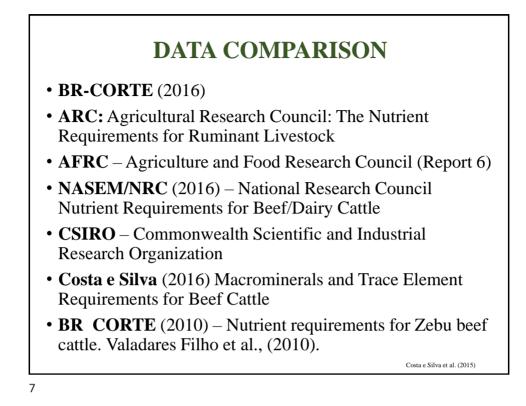
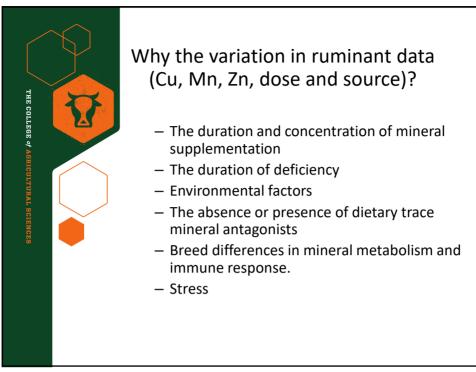
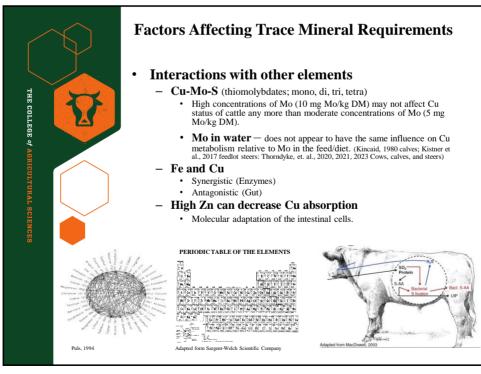

Effects of Trace Mineral Supplementation on Fiber Digestion and Cow-Calf Production

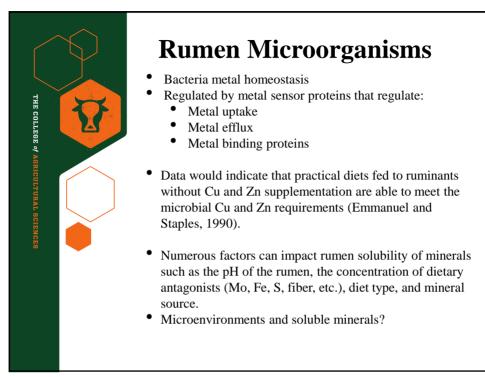

Terry Engle Colorado State University Department of Animal Science

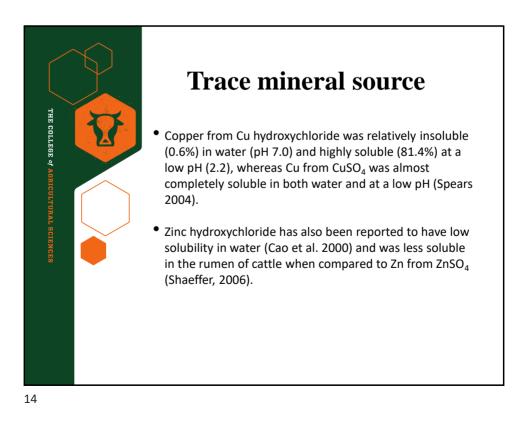




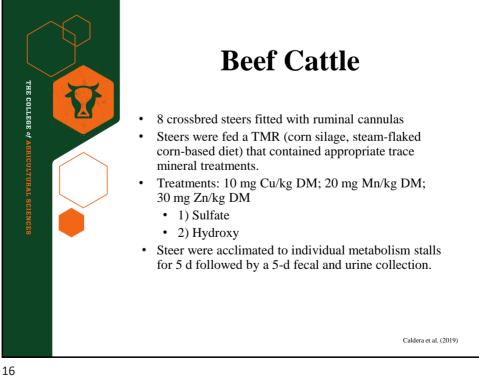




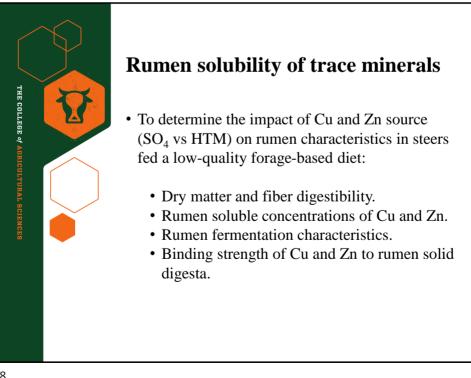

	mg/kg dry matter intake							
Item	Cu	Fe	Mn	Se	Zn	Со		
NRC	10.0	50	20	0.10	30	0.15		
CSIRO (2007)				0.05	11.6			
Costa e Silva et al. (2015)	9.53	218	9.5	0.57	61	2.78		
BR-CORTE (2016)	7.91	207.3	23.1	0.56	56.8	0.78		

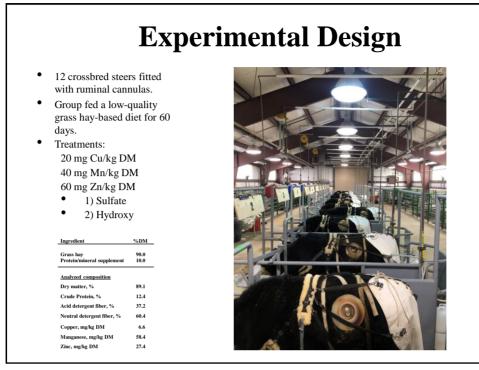


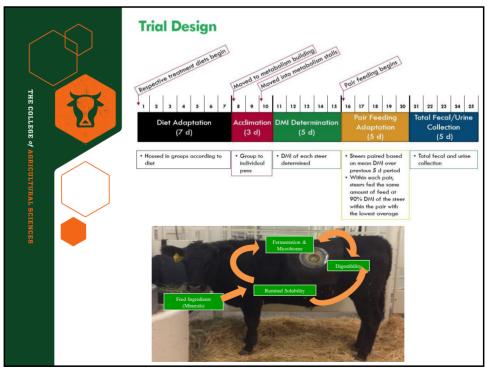
THE	Ruminal disappeara forages from dacron hours in the rumen	ı bags i	ncubate		
The College of Agricultural Sciences		Сор	per	Zir	าด
E of AG	Forage	0 ^a	72 h	0 ^a	72 h
RICULT			% of t	otal	
URAL (Alfalfa	88.9	92.9	25.8	79.4
BCIENC	Rhizoma peanut	50.6	89.6	18.1	80.5
ES	Dwarf elephantgrass	84.4	94.3	7.3	75.5
	Bermudagrass	69.9	75.8	43.1	62.1
	Bahiagrass	63.1	81.7	33.8	53.0
	Limpograss	70.0	69.5	26.6	67.2
	^a Amount disappearing follo	wing wa	shing with	water.	
				Emanuele a	nd Staples (1990)


Effect of trace mineral source on fiber digestion in lactating dairy cows^a

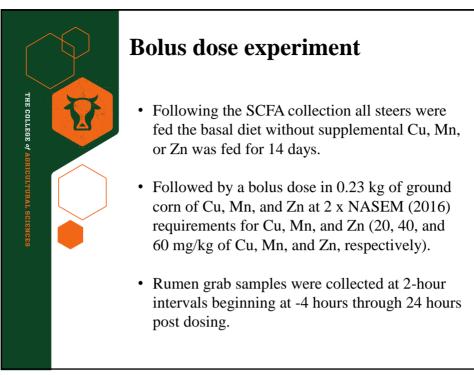
Item	Sulfate ^a	Hydroxy ^a
NDF digestion, % ^b		
Forage diet ^c	43.0	45.9
By-product diet ^d	49.8	51.2

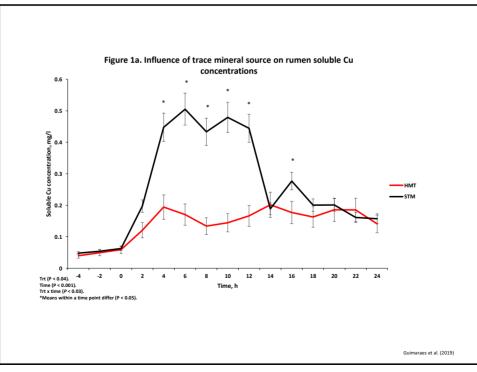

Faulkner and Weiss (2017)

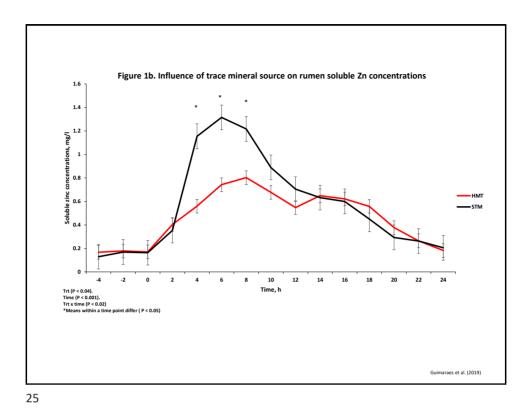

aCopper, zinc, and manganese were supplemented at 10, 32, and 30 mg/kg, respectively. ^bTrace mineral source effect (P < 0.02). °44% corn silage, 20% alfalfa silage.

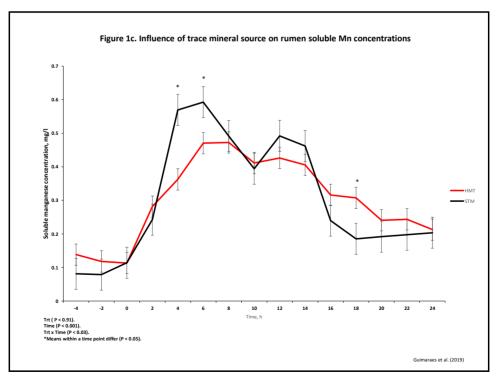

^d11% corn gluten feed, 15% beet pulp, 14.1% soy hulls.

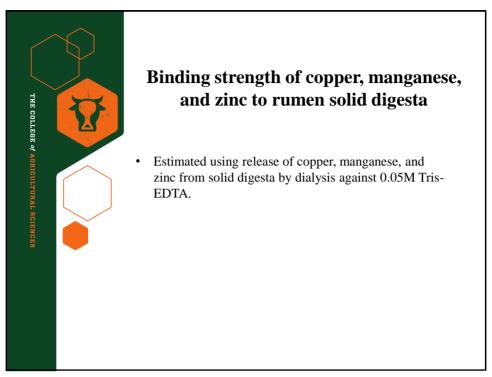
THE COLLEGE OF AGRICULTURAL SCIENCES	Influence of trace minera		VI and NDF d ment	igestibili	ty²
ABHIC	Item	Sulfate1	Hydroxy ²	SEM	P <
ULTUR	DM intake, kg/d	9.92	9.89	0.96	0.98
AL SCI	DM digestibility, %	65.6	70.7	2.4	0.18
	NDF digestibility, %	37.8	41.2	1.7	0.09
	^a Zinc, copper, and mangar mg/kg DM, respectively.	nese were sup	plemented a	t 30, 10,	and 20
				Caldera o	et al. (2019)

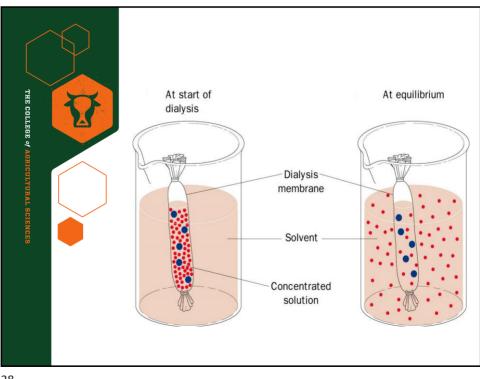


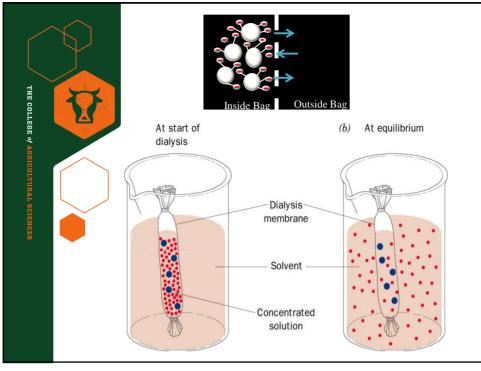


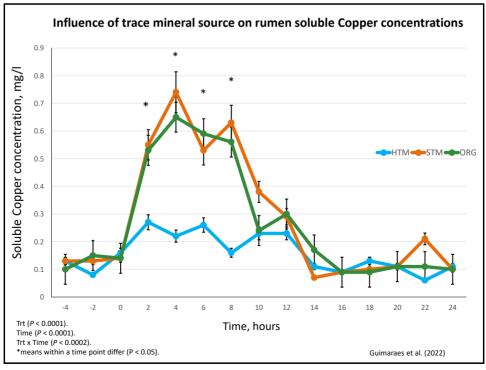


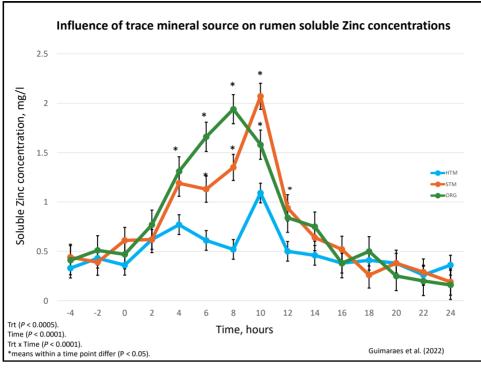

THE COLLEGE OF AGRICULTURAL SCIENCES	Effect of trace steers fed a	low-qua		• •
The second se		Sulfate	Hydroxy	P<
JRICU	DMI, kg/d	7.4	7.4	
LTUR	DM digestibility, %	51.9	53.4	0.07
AL SC	NDF digestibility, %	40.4	42.7	0.04
	ADF digestibility, %	32.4	34.1	0.05
ES	CP digestibility, %	51.2	54.3	0.06
	^a Copper, manganese, and zinc we	ere supplemented a	at 20, 40, and 60 mg/kg	, respectively.
				Guimaraes et al. (2019)


	Da	y 6			
Influence of trace min production at 0, 2, and				fatty acio	I
<u></u>		menta			
Item	STM⁵	HTM℃	Trt	Time	Trt*Time
рН	6.59	6.68	0.47	0.01	0.57
Butyric acid, mM/100mM	16.3	14.9	0.02	0.001	0.93
Total SCFA, mM	59.8	72.3	0.05	0.85	0.86
"Treatments: 20 mg Cu/kg DM; 40 mg f ^b Sulfate trace minerals. 'Hydroxy trace minerals. ^e Short chain fatty acids.	∕In/kg DM; 60 r	ng Zn/kg DM fro	m hydroxy or su	Ilfate trace miner	al sources.
					Guimaraes et al. (20

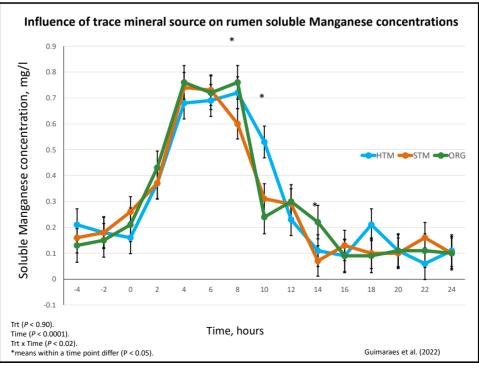


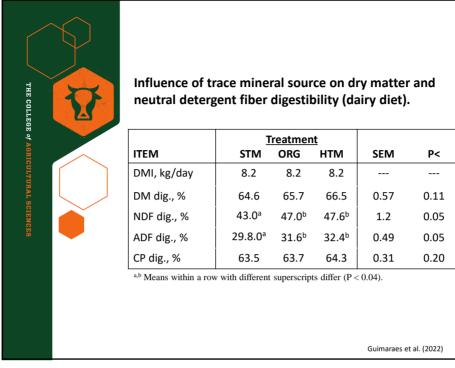


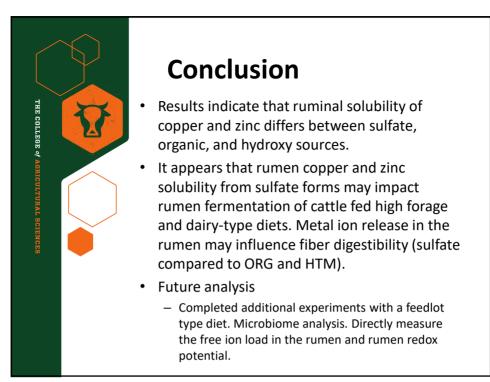


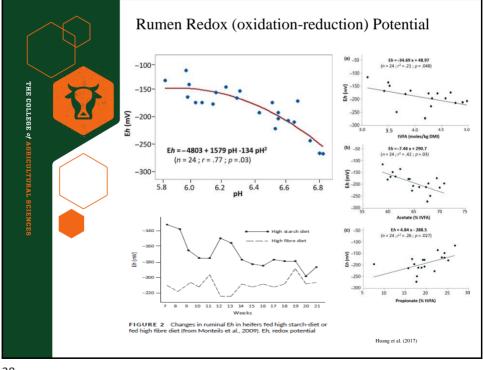


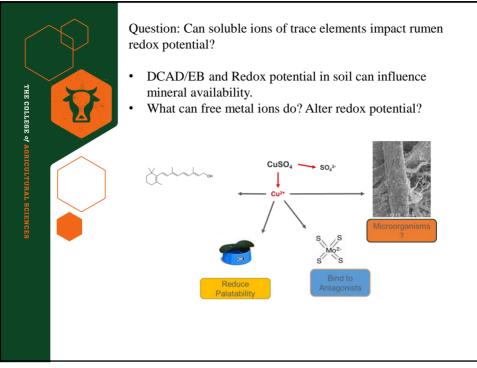
Effect of trace mineral source on release of copper and zinc from rumen digesta at 12 hours after a pulse dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM

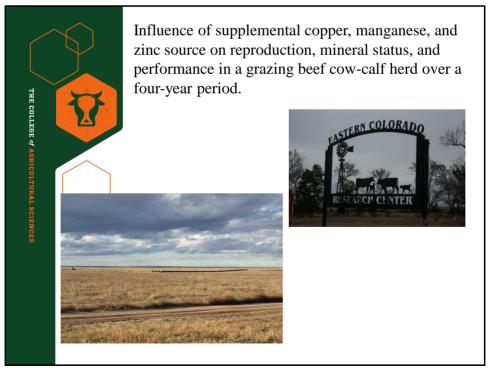

	Hydroxy	Sulfate	P <
Initial concentration in digesta, mg/kg DM			
Copper	31.6	8.1	0.001
Manganese	38.2	35.3	0.030
Zinc	129.6	37.3	0.001
Released by Tris-EDTA, %			
12h			
Copper	59.2	26.5	0.01
Manganese	63.7	77.2	0.01
Zinc	87.8	34.3	0.01

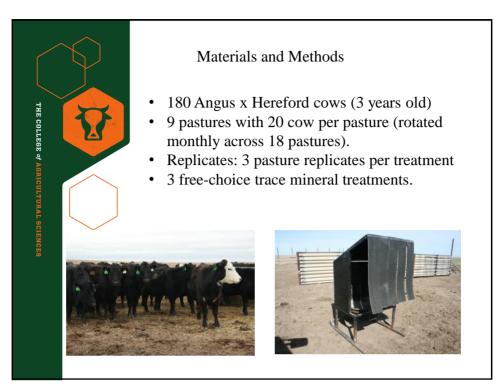

Corn Silage Alfalfa Hay Supplement	64.5 10.2	Steam-flaked corn Corn Silage	66.9 10.0
Supplement	-	Corn Silage	10.0
			10.0
	25.5	Alfalfa hay	10.0
Soybean meal	64.0	Dry distillers grain	10.0
Dry distillers grain	16.2	Supplement	3.1
Cracked corn	9.4	Limestone	48.
Limestone	7.5	Urea	35.
Salt	1.9	Salt	9.
Magnesium oxide	0.64	VTM premix	6.
6			

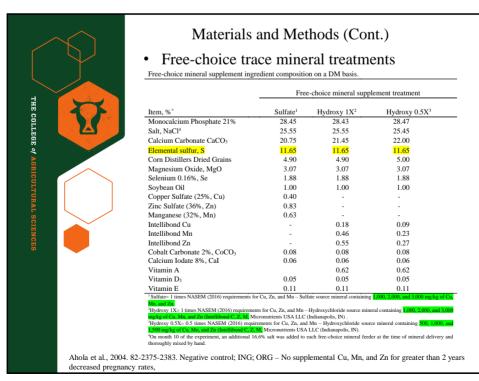


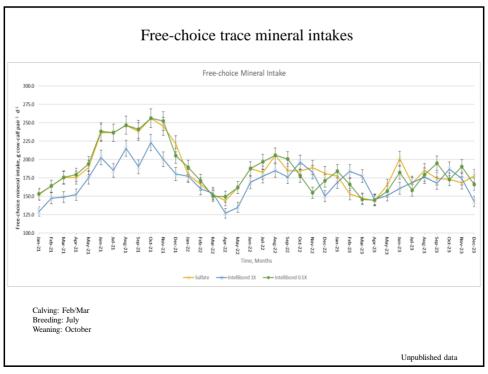


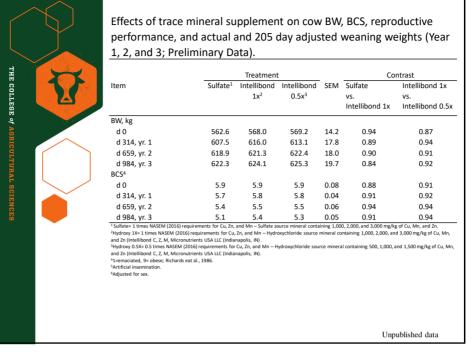

Influence of trace mineral source on short chain fatty acid (SCFA) production post feeding (dairy diet).


		Treatmen	<u>t</u>	<u>P value</u>				
ITEM	ZTM	ORG	HTM	SEM	Trt	Time	Trt x Time	
Rumen pH	6.38	6.42	6.59	0.09	0.26	0.01	0.17	
Total VFA, mM	73.3	78.0	77.4	0.8	0.01	0.01	0.05	

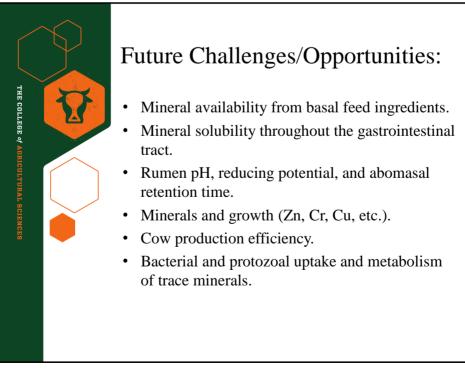

Guimaraes et al. (2022)







Effects of trace mineral supplement on cow BW, BCS, reproductive performance, and actual and 205 day adjusted weaning weights (Year 1, 2, and 3; Preliminary Data).


		Treatment			C	ontrast
Item	Sulfate ¹	Intellibond 1x ²	Intellibond 0.5x ³	SEM	Sulfate vs. Intellibond 1x	Intellibond 1x vs Intellibond 0.5x
Pregnancy rate to Al ⁵ , %						
Year 1	55.0	63.3	56.7	5.1	0.64	0.63
Year 2	30.0	57.5	51.7	6.2	0.05	0.41
Year 3	40.4	60.9	57.3	5.3	0.07	0.40
Overall Pregnancy Rate, % Year 1 Year 2 Year 3	91.7 95.0 94.8	93.3 95.0 95.0	93.1 96.7 96.1	2.3 5.9 6.3	0.86 0.98 0.97	0.92 0.87 0.83
WW, kg						
Year 1	236.4	240.1	235.9	6.1	0.87	0.91
Year 2	242.2	249.9	244.2	3.8	0.10	0.29
Year 3	242.1	248.3	250.3	4.9	0.07	0.17

ing 1,000, 2,000, and 3,000 mg/kg of Cu, Mn, and Zn (Intel

Junite: 1 times NGLM (2016) requirements in Micronutrients USA LLC (Indianapolis, IN). ¹Hydroxy 0.5X = 0.5 times NASEM (2016) require Micronutrients USA LLC (Indianapolis, IN). ⁴¹=emaciated, 9= obese; Richards eat al., 1986. ⁵Artificial insemination. ements for Cu, Zn, and Mn – Hydroxychloride source mineral containing 500, 1,000, and 1,500 mg/kg of Cu, Mn, and Zn (Intellibond C, Z, M,

Effects of pasture trace mineral supplement on offspi	ing feedlot performance and carcass characteristics (Year 1, and 2;
Preliminary Data).	

		Treatmo	ent		C	Contrast		
Item	Sulfate ¹	Intellibond 1x ²	Intellibond 0.5x ³	SEM	Sulfate vs.	Intellibond 1x vs.		
					Intellibond 1x	Intellibond 0.5x		
Year 1 (2022)								
Feedlot initial BW, kg	240.1	243.3	241.9	5.3	0.86	0.86		
Feedlot Final BW, kg	634.2	637.1	638.9	7.9	0.60	0.79		
Feedlot ADG, kg·animal ⁻¹ ·d ⁻¹	1.76	1.77	1.78	0.07	0.91	0.94		
Hot carcass weight, kg	384.2	385.3	385.2	6.4	0.87	0.88		
Dressing percentage ⁴	63.1	63.0	62.8	0.24	0.74	0.78		
Marbling score⁵	634.2	648.3	644.8	9.3	0.36	0.37		
Fat thickness, cm.	1.38	1.30	1.19	0.54	0.76	0.84		
Ribeye area, cm. ²	83.2	84.1	82.9	1.97	0.91	0.87		
USDA YG	2.78	2.69	2.81	0.07	0.62	0.55		
Year 2 (2023)								
Feedlot initial BW, kg	240.4	244.7	243.9	5.9	0.74	0.81		
Feedlot Final BW, kg	637.2	648.3	647.1	6.7	0.21	0.73		
Feedlot ADG, kg·animal ⁻¹ ·d ⁻¹	1.73	1.75	1.76	0.08	0.92	0.94		
Hot carcass weight, kg	387.2	391.2	395.6	5.2	0.64	0.88		
Dressing percentage ⁴	63.3	62.9	63.6	0.31	0.42	0.38		
Marbling score⁵	638.7	654.1	632.1	10.3	0.67	0.58		
Fat thickness, cm.	1.41	1.30	1.29	0.11	0.47	0.38		
Ribeye area, cm. ²	84.1	85.2	82.9	0.94	0.85	0.19		
USDA YG	2.89	2.58	2.84	0.09	0.05	0.04		

