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feed/forage lab engagement
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February 27, 2024

Ralph Ward
Cumberland Valley Analytical Services

Role of the feed lab

• Execute defined peer reviewed assays
• AOAC, AOCS, AACC, ASTM, NFTA

• Journal published assays

• Lab results should be able to be associated with specific assays

• Assay definitions should be published and easily located

• Ensure quality control in execution of assays
• What are the quality control systems in the laboratory?

• Is there a quality control officer?

• How are samples controlled?

• How are samples ground / processed?
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Role of the feed lab

• Execute quality control (proficiency) programs
• NFTA
• AAFCO
• AOCS
• AACC
• BIPEA

• Execute under ISO 17025 or other quality assurance program (?).
• Manage internal data in a well-developed LIMS (laboratory information 

management system).
• Execute and report results in an agreed upon time-frame.
• Communicate and manage client data effectively.
• Effective communications between lab and the client.

Potential roles of the feed lab

• Assist in interpretation of data

• Nutritional support

• Research support

• Method development research

• Provision of data libraries

• Sample collection and transit (“drop box” system)

• Farm sampling services

• Improved time in transit execution
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U.S. forage lab industry engagement

• Unique to global ruminant industry

• Many small labs in the 1980’s that engaged the new technology of NIR

• Initially, questionable NIR results but set the stage for rapid low-cost analysis

• Services available as the role of forage quality became recognized and ration modeling started in 
earnest.

• Low cost, rapidly available lab services underwrote the development of the ruminant nutritional 
services industry in the U.S.

• Lack of external lab quality regulation allowed for labs to keep costs low.

• Routine testing has implemented the concept of process control and mitigation of variation in 
feed sources.

• Significant value contribution.

U.S. feed lab evolution

• Formerly many small chemistry labs served the U.S. feed industry.

• Small lab ownership was not carried forward, labs closed or were bought out in 
successive lab aggregations.

• Technology has allowed large feed manufacturers to internalize QC.

• In the U.S. only a few large providers of feed analysis services.

• Forage lab analysis for ruminant purposes now resides with 4 primary labs in the 
U.S.
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Quality control systems vs sample cost

• Extensive quality control system engagement by labs is a requirement in many industries.
• Example:  EPA certifications for environmental work.

• In EU in many cases feed lab service provision requires ISO or similar certification.

• These quality control systems drive up costs but don’t always bring functional value, especially in 
forage testing where needs are different.

• Forage and feed lab quality control systems will evolve over time.

 As a lab client, becoming familiar with forage and feed lab processes will allow

                for improved value in the absence of these programs and will assist in keeping 

                costs low and routine analysis affordable.

Chemistry versus NIR utilization 

• In the U.S., >90% of routine analysis for forage and ingredient quality 
is by NIR.
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NIR History

• Described in literature as early as 1939

• Dr. Karl Norris and coworkers first applied the concept to agricultural 
products in 1968 with instrumentation at a USDA research lab.

• Dr. John Shenk, a plant scientist at Penn State pushed Dr. Norris to 
consider the use of NIR for evaluating forage quality (published 
communication) and in 1976 it was demonstrated that absorption at 
specific wavelengths was correlated with chemical analysis of forages.

NIR History

• In 1978 a portable unit was designed for use in a van on farm and at 
hay auctions.  This developed into a university extension program 
using mobile NIR vans in PA, MN, WI, and IL.  

• By the early 1980’s, several companies were manufacturing 
commercial units.

• At Penn State, John Shenk and his associate Mark Westerhouse 
became the world’s leading authority on the development and use of 
NIR for agricultural applications.
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What makes a good NIR equation?

• Just because a lab generates a nutrient value on an NIR report does not mean 
that the number has value!
• “Good” calibration statistics do not guarantee a good equation.

• Large numbers of samples do not guarantee a good equation.

• Having samples “over many seasons” does not necessarily make for a good equation.

• Having good calibration statistics is not a guarantee of a good prediction.

• Is the reported nutrient a NIR prediction, a calculation, or a value based on an NIR 
calibration.

   So, what makes for a good NIR equation?

What makes a good NIR equation?

• Applying NIR to an organic constituent that has C-H, O-H, N-H, or S-H bonding

• A broad range of like characteristic spectra
• From a defined feed type such as “hay” or “corn stover”

• A set of spectra that uniformly covers the spectral range of a defined feed 
material

• This can be the hard part, obtaining a representative set of materials

• Accurate chemistry information for the nutrient being calibrated!
• Chemistry analysis is difficult to do on a large set of samples and costly

• Equation statistics that provide a high R2 and low Standard Error of the 
Calibration (SEC)

• Validation of the equation against a broad range of routine samples

• Validation of the of the calibration samples against the general population

• Does the predicted nutrient have prediction value?
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1163 samples labeled DDGS

100 samples labeled DDGS, linear selection
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Large set of calibration spectra 
versus a selected set

7900 corn silage spectra for selection process
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Selected corn silage spectra
Amino acid calibration, uNDF calibration

Starch Evaluation by NIR
CVAS Calibration Statistics

N Mean RSQ SEC

Corn Silage 1677 28.1 % .98 1.01

Corn Grain 1302 71.2 % .99 .45
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Comparison of Starch by Chemistry and NIR
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New Report Reference Information

• Nutrient Z Score
How far is the value from the mean

• Nutrient Global “H”
How far is the spectra from neighbors in the population

• Nutrient RPD value
What is the prediction value for the nutrient

This information will assist the user in knowing if the reported information has 
decision value.
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What is a “Z score?”

• A Z score is the number of standard deviations that a value is above 
or below the mean value.

• The Z score is a single value that provides understanding of how far a 
nutrient value falls from the mean.  It is a more descriptive way of 
understanding how a value relates to a population.
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What is the sample definition for a population for 
comparing a sample?

• We often compare samples to “range values”, perhaps a mean and 
plus/minus 1 SD.

• To obtain value from comparisons define objectives and use the 
appropriate summarized population!
• Corn distillers

• Low fat distillers

• High protein distillers

• Wheat distillers

• Large population averages do no change significantly over time
• U.S. corn silage analysis averages do not vary much from year to year.

What is a Global H value?

• Statistical Term

• The “H” refers to the “Hat” or  “^”

• The value is the squared distance between a sample spectrum and the average 
spectrum sample in a population

• A low H, or distance, means that the sample belongs to the population (<3)

• A very high H means that the sample probably does not belong to the population 
(>7?) while an intermediate value (3 to 5) means that the calibration may benefit 
by adding the sample to the calibration set.

• The Neighborhood H value is the distance of the between a spectra and its 
nearest neighbor spectra and should be <.6.
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Distribution of NIR GH Values for 
uNDF Calibration of Haylage
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GH evaluation across 15,000 samples, 3 corn 
silage calibrations
Three calibrations were evaluated by applying them each to a set of 15,000 
sample spectra.  The GH values generated for each sample were summarized 
by calibration.

• Random spectra selection for general nutrients (developed from 1154 
samples)
• GH Average = 1.16, SD = .50

• Linear spectra selection for amino acids (255 samples)
• GH Average = .82, SD = .48

• Linear spectra selection for uNDF calibrations (305 samples)
• GH Average = .58, SD = .32
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Illustration of the Global H and 
Neighborhood H Values 

What is RPD?

• RPD is the “ratio of performance to deviation”.

• A mathematical definition would be RPD = (1-R2)-0.5. 

• Practical definition is the “Standard Error / Nutrient Standard 
Deviation”
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CVAS NIR Calibration Statistics for 
uNDF in Corn Silage

Constituent N Mean SD Est. Min Est. Max SEC RSQ SECV SD/SECV

NDFom 205 39.311 6.748 19.069 59.554 1.004 0.978 1.181 5.714

uNDFom4HR_DM 305 37.407 6.454 18.045 56.768 1.256 0.962 1.344 4.802

uNDFom8HR_DM 310 31.765 5.629 14.879 48.652 1.364 0.941 1.479 3.807

uNDFom12HR_DM 306 24.999 4.560 11.318 38.680 1.329 0.915 1.454 3.137

uNDFom16HR_DM 307 22.186 4.058 10.011 34.360 1.180 0.916 1.380 2.940

uNDFom20HR_DM 101 19.020 3.101 9.718 28.322 1.029 0.890 1.181 2.625

uNDFom24HR_DM 98 17.314 3.204 7.703 26.925 0.784 0.940 1.088 2.943

uNDFom30HR_DM 296 16.052 3.914 4.309 27.794 1.072 0.925 1.221 3.206

uNDFom36HR_DM 95 13.142 2.988 4.179 22.105 0.574 0.963 0.854 3.497

uNDFom48HR_DM 300 12.880 3.332 2.884 22.875 0.924 0.923 1.111 3.000

uNDFom72HR_DM 302 12.030 3.123 2.660 21.400 0.865 0.923 1.009 3.095

uNDFom96HR_DM 97 10.998 2.809 2.573 19.424 0.449 0.974 0.641 4.382

uNDFom120HR_DM 302 10.930 3.011 1.898 19.962 0.955 0.899 1.060 2.840

uNDFom240HR_DM 306 10.307 2.905 1.593 19.020 0.905 0.903 1.040 2.792

The NIR Team
Representing over 50 years of experience!
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NIR Technology Application

Handheld NIR Opportunities

• Several models of handheld NIR available in the market.
• NeoSpectra

• Trinamix

• Easily portable, few moving parts, advanced spectrophotometric 
capabilities.

• Good operating apps to work from phone for scanning and basic data 
management.

• Calibration statistics on dried ground material can be quite good.

• Affordable pricing.
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Handheld NIR Limitations

• Sample presentation to the NIR unit is a challenge for obtaining 
precise and repeatable results.

• Sample homogeneity is a key requirement for precision NIR analysis.

• As-received samples that are coarse and/or have high moisture may 
not provide reliable results.

• Predictions on ingredients can be acceptable if the material is ground.

• Matching of instruments can create problems in deployment of 
calibrations.

Sci-Ware CVAS Corn Silage Model 
Parameter N Mean SD Min Max SEC R2 CV SECV SD/SECV

DM 192 35.30 3.77 26.90 42.90 1.26 0.83 1.42 2.70

CP 192 7.84 0.79 6.10 12.10 0.47 0.50 0.54 1.50

NDF 191 37.91 3.56 30.00 60.00 1.98 0.62 2.31 1.50

LIGNIN 192 3.02 0.39 2.00 4.30 0.26 0.45 0.30 1.30

STARCH 185 34.63 5.16 16.50 44.10 2.71 0.62 3.20 1.60

FAT 180 3.26 0.32 2.20 4.10 0.21 0.38 0.25 1.30

ASH 189 3.26 0.32 1.80 7.80 0.24 0.30 0.27 1.20

LACTIC 196 3.42 1.06 1.00 9.00 0.75 0.30 0.90 1.20

ACETIC 195 5.09 1.41 0.30 8.50 0.81 0.50 0.98 1.40

PH 193 3.81 0.15 3.45 4.35 0.09 0.40 0.11 1.40
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Dried ground corn silage model performance

Parameter N Mean SD Min Max SEC r2 - CV SECV SD/SECV

ACETIC 153 2.01 1.34 -0.78 6.60 0.86 0.56 0.89 1.51

ADF 150 25.43 4.81 12.44 42.77 1.13 0.93 1.23 3.90

AMMONIA 152 0.89 0.30 0.21 1.73 0.14 0.76 0.15 2.03

ASH 151 4.57 1.50 -0.77 9.03 0.74 0.72 0.79 1.90

CP 152 8.12 1.55 4.85 11.67 0.54 0.87 0.57 2.74

FAT 152 3.01 0.44 1.49 4.44 0.23 0.70 0.24 1.81

LACTIC 153 4.45 1.98 0.61 9.33 0.83 0.81 0.86 2.30

LIGNIN 152 3.26 0.66 1.44 5.69 0.30 0.76 0.32 2.06

NDF 153 41.39 7.45 23.38 66.82 2.00 0.92 2.09 3.56

PH 152 3.93 0.18 3.50 4.39 0.09 0.71 0.10 1.84

STARCH 153 29.28 11.49 0.75 51.09 2.93 0.93 2.97 3.87

TFA 152 2.47 0.50 1.05 3.54 0.24 0.75 0.25 2.00

uNDFom240HR_DM 152 11.50 2.52 5.07 21.83 1.29 0.72 1.34 1.89

uNDFom30HR_DM 151 16.90 2.98 8.91 29.31 1.40 0.75 1.49 1.99

CP model
Cross-Validation
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Handheld NIR Opportunities

• Match the technology to the optimal use.

• Speed of access to information is only of value as that information 
allows for time-sensitive decisions to be made.

• Does the technology bring value or require time, capital, 
administrative, and technical resources?

Use case:  Receiving soybeans at the mill

• High oleic soybean genetics are coming into the marketplace.

• Mills receiving these soybeans need to know in real time if the  beans 
being delivered are high oleic.

• The NeoSpectra NIR unit will allow the mill to effectively determine 
whether soybeans are high oleic or traditional genetics.
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NIR Predicted Oleic Acid vs Chemistry, High Oleic versus 
Traditional Genetics
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Future Opportunities

• VNIR Hyperspectral imaging

A technology that uses sensors to collect a broad range of spectral data in the 
NIR and visible regions on a pixel basis evaluating a material multidimensionally 
using advanced computing to derive relationships. 

Used in a variety of quality evaluations such as food quality control

There is significant research to apply this in various quality control realms.
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Future Opportunities

• Reducing analytical error through replication:

Future Opportunities

• Improved quality of calibrations.

• Expanded calibrations or new calibrations built around specific 
materials or forage species.

• Expert systems to develop information from sample comparison to 
the population or recognizing change over time.

• Increased understanding of what data is important in recognizing 
quality and variation over time.
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