

Can intensification of grazing management help?

				Systems *		
Variables	n	EXT	INT	iCL	SEM	<i>p</i> -Value
ILW (kg)	60	253	267	256	8.39	0.5940
FLW (kg)	60	429 ^b	484 ^a	466 ^a	16.76	< 0.0001
$DMI (kg day^{-1})$	60	9.8 ^a	8.7 ^{ab}	7.5 ^ь	0.31	< 0.0001
LWG (kg ha ^{-1} year ^{-1})	60	290 ^c	615 ^a	487 ^{ab}	53.98	< 0.0001
$CH_4 (g day^{-1})$	60	199.7	226.1	209.8	7.3	0.1606
CH_4 (g kg LW ⁻¹)	60	0.62	0.58	0.61	0.03	0.2047
CH_4 (kg kg DMI^{-1})	60	0.028 ^a	0.028 ^a	0.029 ^a	0.001	< 0.0001
gCH4 kgADG ⁻¹ LWG ha ⁻¹ year ⁻¹	60	1.6 a	0.6 c	0.8 ^{bc}	0.09	0.0031
$kgCH_4$ kg Carcass eq. ⁻¹	60	0.496 ^a	0.250 ^b	0.297 ^b	0.024	0.0047

• EXT = continuous stocking, low input

• INT = rotational grazing, lime and fertilizer applied

• iCL = integrated crop/livestock: corn harvested for silage in a rotation

• 3 year-study with 6 replicated pastures/trt

Meo-Filho et al. (2022; Agronomy, doi.org/10.3390/agronomy12112738)

Replacing urea with nitrates as a non-protein nitrogen source can decrease enteric methane by 11% (Henry et al., 2020; J. Anim. Sci.)

	Treat	Treatment		
	AOP	CTL	SEM	P- value
Intake				
DM, kg/d	6.9	7.3	0.24	0.17
OM, kg/d	6.6	7.0	0.23	0.16
DM, as % of BW	2.62	2.67	0.070	0.58
Methane emissions				
g/d	262.8	237.8	19.03	0.26
g/kg DMI	39.1	32.8	2.73	0.09
g/kg OMI	40.7	34.1	2.85	0.09
g/kg DMD	58.2	50.2	4.15	0.14
g/kg OMD	59.1	51.0	4.20	0.15
g/kg MBW	4.0	3.5	0.28	0.16

