

Pedro L. P. Fontes
Department of Animal & Dairy Science
Assistant Professor
p: 706-542-9102
e: pedrofontes@uga.edu

1

Over the next 40 minutes...

- Overview of observational studies evaluating the relationship between over conditioning and bull fertility
- Experimental evidence for the impact of bull over conditioning on fertility
- Recent developments on the impact of over conditioning on bull fertility

UNIVERSITY OF GEORGIA

Variation in Sire Field Fertility in Fixed-Time **Artificial Insemination Programs - GERAR**

Insemination records only included cows with adequate body condition scores and sires with at least 100 inseminations.

Al Center	Number of Al	Average PR/AI	Range in Sire PR/AI
Α	45,231	54.8	38.3 to 79.1
В	128,443	55.4	30.9 to 70.2
С	9,434	50.5	38.1 to 57.9
D	19,311	56.7	42.8 to 76.9
E	25,522	54.8	28.2 to 72.4
F	32,397	52.5	32.1 to 62.7
G	7,042	54.9	22.8 to 81.3

III UNIVERSITY OF GEORGIA

Vasconcelos et al., 2017; SBTE Proceedings 3

3

Variation in Sire Field Fertility in Fixed-Time **Artificial Insemination Programs- Controlled Study**

n = 4,866

Sire	Number of Al	Average PR/AI
Α	1,050	48.1
В	1,058	47.7
С	1,206	40.7
D	747	45.5
E	805	43.1

Factors influencing this variation in sire PR/AI are still poorly understood

university of georgia

Zoca et al., 2020. Theriogenology, 147:146-153 4

Can We Experimentally Induce This Phenotype? UNIVERSITY OF GEORGIA 14

Effects of Treatment on Bull Sexual Development

- · Diets successfully induced changes in body weight
- Diets successfully induced changes in metabolic hormones (IGF-1, insulin, leptin)

	Plane of Nutrition			
Item	Hi-Hi	Hi-Lo	Lo-Lo	Lo-Hi
Age at Puberty, d	298 + 6.3ª	283 + 5.6a	319 + 3.9 ^b	323 + 6.5 ^b
Age at sexual maturation, d	331 ± 7.1 ^a	314 ± 7.5ª	343 ± 7.1 ^b	352 ± 3.7 ^b
Paired testis weight at 72 wks of age, g	660 ± 28.5	659 ± 19.8	629 ± 19.7	594 ± 26.6

a,b: uncommon superscript differ (P < 0.05)

Age at puberty: 50 million sperm with at least 10% motility Age at sexual maturation: Passed a breeding soundness examination

university of georgia

Byrne et al., 2018. J. Dairy Sci. 104:3447-3459 19

19

Influence of Diet on Semen Production in the Context of Artificial Insemination

Effects of early life nutrition on semen production from 13-15 months of age

		Plane of Nutrition		
Item	Hi-Hi	Hi-Lo	Lo-Lo	Lo-Hi
Number of straws*	308	205	177	92
Commercial value,\$**	4619	3073	2662	1377

^{* 10} million sperm/straw

Take home message

Post-weaning growth have less impact on puberty than pre-weaning growth

university of georgia

Dr. David Kenny. ARSBC, 2020 20

^{**}Assumes \$15 per semen straw

Bull Management After Purchase

- Changing from a concentrate to forage-based diet
- Placed in larger pastures
- Hierarchy in multi-sires pastures
- Breeding cows is a physically demanding activity
- Can lose 100-200 lbs during the breeding season

Effects of Plane of Nutrition on Mature Bull Fertility

- Treatments (112-day feeding period):
 - · Positive Energy Balance gain 12.5% of body weight
 - Negative Energy Balance lose 12.5% of body weight

	Treatment			
Item	NEG	POS	SEM	P-value
Rump fat, cm				
Beginning	0.42	0.48	0.09	0.68
End	0.29	0.90	0.11	0.001
Rib Fat, cm				
Beginning	0.38	0.40	0.05	0.76
End	0.25	0.64	0.10	0.02
LM area, cm				
Beginning	95.7	91.5	3.74	0.43
End	84.5	106.1	3.42	< 0.001
Intramuscular fat,%				
Beginning	3.21	3.31	0.29	0.81
End	2.55	3.49	0.36	0.08

university of georgia

Dahlen et al., 2020. J. Anim. Sci. (Abstract) 23

23

Effects of Plane of Nutrition on Mature Bull Fertility

- Computer assisted sperm analysis (CASA)
 - Frozen-thawed semen:
 - · Negative energy balance (NEG) bulls had greater motility
 - Sperm classified as motile and progressively motile had greater velocity in **NEG bulls**
- Flow cytometry
 - · Positive energy balance (POS) bulls had a greater proportion of sperm staining positive for reactive oxygen species
 - · POS bulls had decreased mitochondrial membrane potential compared with **NEG bulls**

Over conditioning had a more pronounced detrimental effect compared with under conditioning

🕅 UNIVERSITY OF GEORGIA

Dahlen et al., 2020. J. Anim. Sci. (Abstract) 24

High Adiposity and Male Fertility - Humans • Erectile disfunction • Increased scrotal temperature • Germ cell apoptosis • Sperm oxidative stress • Sperm DNA fragmentation • Altered sperm parameters • Decrease embryo production © UNIVERSITY OF GEORGIA Oliveira et al., 2017. Reproduction. 153: R173-R185

29

Paternal High Fat Diets and Embryo Development and Pregnancy Establishment

Item	Control	High Fat	P-value
Cleavage rate ¹ , %	79.1	50.5	< 0.001
Early blastocysts ² , %	57.0	26.6	< 0.001
Hatched blastocysts ³ , %	46.0	25.5	< 0.001
Implantation/transfer, %	86.7	73.3	< 0.05
Fetal development/transfer, %	38.7	21.3	< 0.05

¹ Day 2 of embryo culture

III UNIVERSITY OF GEORGIA

Mitchell et al., 2011. Fertility and Sterility. 95:1349-1353 31

31

² Day 4 of embryo culture

³ Day 5 of embryo culture

<u>Influence of Sire Diet on In Vitro Embryo Production</u>

- Eight sires were randomly assigned to the same diet (NEm = 2.10, NEg = 1.44, CP = 14.1%, NDF = 16.6%, DM basis) fed at two different inclusion rates while having ad libitum access to bermudagrass hay (NEm = 1.02, NEg = 0.45, CP = 10.2%, NDF = 71.6).
- High gain (HG): 1.25% of BW daily
- Maintenance (MAINT): 0.5% of BW daily

67 days feeding period

33

Summary

- Nutritional programs can focus on promoting growth: however, excessive fat deposition can have detrimental effects on fertility
- •Extreme anabolic conditions can negatively impact sire fertility
 - · Decreased semen quality
 - Increased sensitivity to stressors (freezing and thawing process)
- Extremely anabolic conditions appear to negatively impact early embryonic development in cattle
- Consequences of extreme anabolic conditions to conceptus development past the blastocyst stage remains unknown

Acknowledgements Graduate Students

Dr. Bromfield **Zack Seekford** Dr. Ferrer M. Dickson Dr. Lamb **Matt Holton** Dr. Pohler **Dylan Davis** Dr. Stewart Lucas de Melo Dr. Pringle **Samir Burato** Dr. Stelzleni **Molly Smith** Dr. Fluharty **Madison Walker**

Dr. Zoca **Dr. Shane Hernandez** Dr. Kerns

Beef Staff

- J Phil Campbell
- · Eatonton Beef Research Unit
- NWREC Center
- · Alapaha Range Grazing Unit

🕅 UNIVERSITY OF GEORGIA

43

Dr. Henry

Faculty

<u>43</u>

Thank you!

Pedro L. P. Fontes

Department of Animal & Dairy Science
Assistant Professor

425 River RD | The University of Georgia
Office 152
Athens, GA 30605
p: 706-542-9102

p: 706-542-9102 e: pedrofontes@uga.edu

UNIVERSITY OF GEORGIA

<u>45</u>