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Histidine – a limiting amino acid
for dairy cows
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The Pennsylvania State University

35th Annual Florida Ruminant Nutrition Symposium, Feb 26 - 28, 2024, Gainesville, FL

Talk outline
• How it all started - feeding reduced-

protein diets to dairy cows

• Why Histidine?

• Early research

• Penn State research

• Conclusions 
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Low-protein diets - Why?

• What is a low-protein diet?
– Diets supplying MP below requirements?
– Diets with CP below “industry standards”?
– Several surveys showed average CP in dairy diets 

being around 17%; now many diets tend to be closer 
to 16%

• Reasons for feeding low-protein diets:
– Reduced feed cost
– Striving for efficiency 
– Reduced N emissions (originally, NH3 was the target)
– Protein overfeeding and reproduction 

Environmental concerns with N

• Eutrophication 
of water bodies 

• Ground water 
quality 

• Air pollution
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Urinary N is the problem
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Decreasing urinary N/urea excretion 
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Dietary CP influences manure ammonia 
emissions as well

7.0 vs 2.6 g/m2/h
P < 0.01 

Lee et al., 2016

1%-unit reduction in CP can have a 
large effect on ammonia emission from 

manure
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16 dairy farms: average reduction = 23%
Dietary CP decreased from 16.5 to 15.4%

IOFC increased by $0.61/cow/d

Hristov et al., 2015

7

8



3/4/2024

5

Due to deficiency of specific AA or RDP, MP balance 
of -12 to -13% will likely decrease DMI, milk yield & 

components
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Dietary starch concentration, % of DM
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More recently, enteric methane became a 
target: low-protein, high-starch diets?

Cueva et al., 2024
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Milk fat % decreased but milk protein and ECM yields and ECM feed efficiency increased with 
increasing dietary starch concentration

Effect of an approx. 1%-unit decrease 
in CP on enteric methane emissions

Räisänen et al., 2022
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Histidine 

• Unique among EAA with an imidazole side chain
• Similar to Met, a Group 1 AA (extracted by the 

liver with post-liver supply approx. equal to 
mammary uptake and output in milk)

• Which would suggest that requirements for His 
should be similar to those for Met

• However, variability in estimates for His 
requirements have been large: 2.2 to >3% of MP
– Major reasons for this are endogenous His depots: 

carnosine and blood hemoglobin
– And lower His than Met in microbial protein

Net flux of Met and His

Lapierre et al., 2008
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Histidine 

• Catabolic pathways: 
– Incorporation into protein
– Synthesis of carnosine 
– Decarboxylation of histidine to histamine by histidine 

decarboxylase
– Buffering role of histidine and histidine-related compounds

• Controversial effects of His on feed intake regulation
– Reports with lab animals and non-ruminants indicate 

stimulatory effect on feed intake: perhaps through acting on the 
anterior prepyriform cortex, the brain’s AA “chemosensor” (no 
stimulation when His was infused in the jugular veins vs. the 
carotid arteries)   

– Other reports suggest the opposite effect – His depresses feed 
intake through its conversion into histamine in the 
hypothalamus; the released histamine acts on food intake 
through histamine H1 receptors activation of histamine neurons

Histidine research

Räisänen et al., 2023
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Science, 1966
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A. I. Virtanen; Science, 1966
Cow on normal feed Cow on synthetic feed

Ranking of AA limiting milk production of a 
cow milking 35 kg/d with 3.30% CP

Broderick, 1972

Based on these calculations, Broderick concluded that Met is 1st 
limiting with Lys and His closely 2nd and 3rd. Apart from Leu and Phe, 

other EAA are unlikely to be limiting.
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Histidine content in feeds
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Histidine work at Penn State

• Observed a consistent apparent drop in 
plasma His with long-term feeding of low-CP 
diets

• His is unique among EAA: depots of labile His 
in muscle dipeptides and blood cholesterol 

• Hypothesis: on low-CP diets, microbial protein 
is becoming an increasingly important source 
of AA for the cow 
– However, compared with Met, microbial protein 

is a poorer source of His

Histidine work at Penn State
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A couple of examples of the effect of 
dietary CP/MP on plasma His

0

0.1

0.2

0.3

0.4

0.5

0.6

Plasma His, mg/100 mL

MPA diet MPD diet

P < 0.01

0

5

10

15

20

25

30

35

40

45

Plasma His, uM

MPA diet MPD diet

P < 0.01

Lee et al., 2012; Giallongo et al., 2016

Endogenous sources of His

Carnosine
Anserine

Hemoglobin

Giallongo et al., 2017:
➢ Blood hemoglobin = 380 g mHis
➢ Muscle carnosine & anserine = 270 g mHis
➢ These could supply mHis for about 7 wks 

(at approx. – 6 g mHis/d deficiency) 
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Hristov et al., 2019 (data from Lee et al., 2012, 2015)

P = 0.89

P < 0.01

Body reserves can hide temporary 
His deficiencies 
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Met and His in milk protein vs. 
bacteria
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The relative contribution of microbial
protein to the total MP supply is higher with 

low MP diets

INRA data from Hristov et al., 2019

NASEM 2021 simulations

Diet CP, % Proportion of 
microbial MP 

Total mHis, g/d mHis efficiency 
(target is 0.75) 

N excretions, 
g/d

15.1 0.58 56 1.04 402

17.2 0.53 67 0.87 488

18.4 0.51 73 0.80 539
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Mature, 700 kg BW Holstein cow, 100 DIM, 55 kg milk/d, 3.30% fat, 2.80% TP, 28 kg/d DMI
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Blood hemoglobin, 
His, and carnosine as 

affected by His 
deficiency  

Giallongo et al., 2017

0

10

20

30

40

50

60

70

80

dHis supply, g/d

dHis1.8 dHis2.2 dHis2.6 dHis3.0

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Milk TP, kg/d

dHis1.8 dHis2.2 dHis2.6 dHis3.0

P < 0.01, linear

Linear increase in MY and FE, no effect on DMI

Lactational performance 
was optimized at 

dHis supply of 74 g/d (or 
3.0% of MP)

No effect on MTP in the 
MPA diet trial

37

38



3/4/2024

20

Dose-response studies with RPHis: ECM yield 
effect with MP-adequate and -deficient diet
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DMI

Milk yield
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Dry matter intake and milk yield across increasing adjusted digestible His (adHis) supply

Responses to RPHis supplementation 
depend on MP supply

MP supply/MP requirements (NRC, 2001)
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Production responses increase as MP deficiency increases
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Adj. dHis supply adHis supply to NEL ratio

<1,6, His limiting
>1,6, NEL limiting

Be aware of incorrect bioavailability 
data of RPAA!

Räisänen et al., 2020
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Take-home message
• Dietary protein intake is the most important factor determining 

nitrogen efficiency, urinary nitrogen losses, and consequently, 
nitrate leaching and ammonia and nitrous oxide emissions from 
dairy cow manure 

• Earlier and more recently studies with corn silage-based diets 
conducted at Penn State indicate that His may be a limiting AA in 
dairy cow fed low-protein (< 16% CP) diets
– Long-term trials showed that supplementation of such diets with rumen-protected 

His increased or tended to increase milk yield and milk protein percent and yield, 
partially through increasing DMI

– Our data suggest dHis recommendations at around 3.0% of MP, or 70-74 g/d

– Watch for false bioavailability data

– Order and degree of AA limitation will likely depend on EAA profile of RUP

• The effects of low-protein, high-starch diets on enteric methane 
emission and overall carbon footprint of milk needs to be further 
examined

QUESTIONS?
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