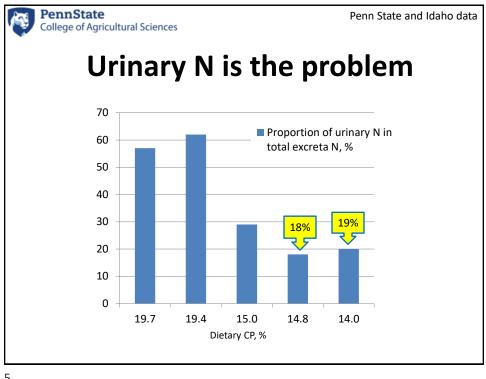
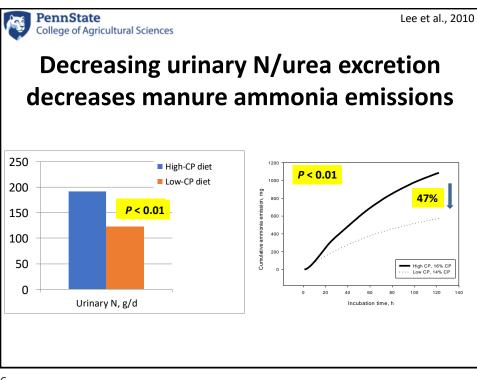
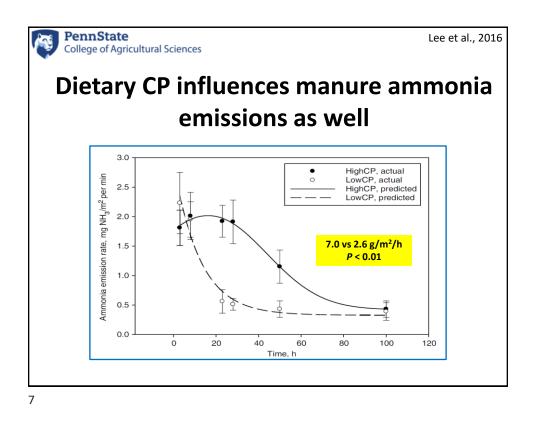
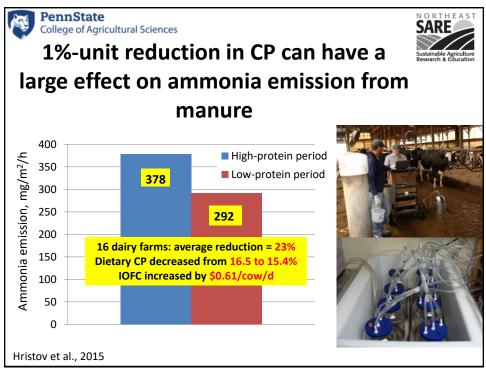

Histidine – a limiting amino acid for dairy cows

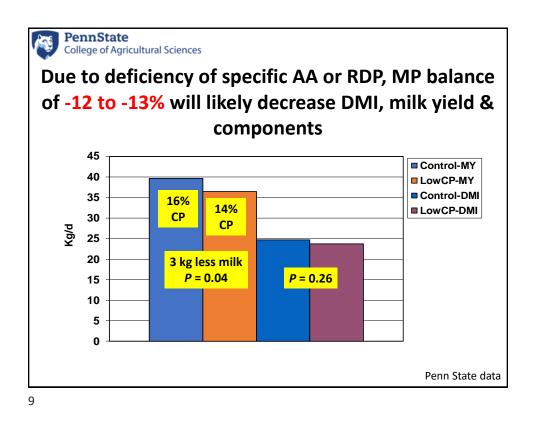

Alex N. Hristov Distinguished Professor, Department of Animal Science The Pennsylvania State University

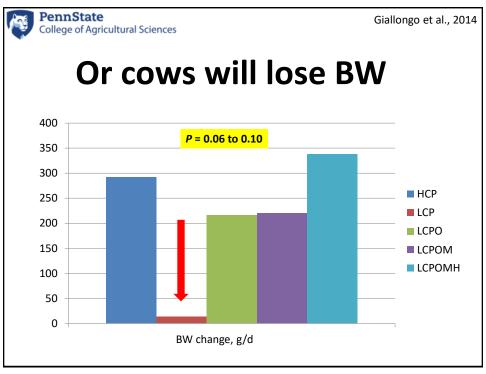
35th Annual Florida Ruminant Nutrition Symposium, Feb 26 - 28, 2024, Gainesville, FL

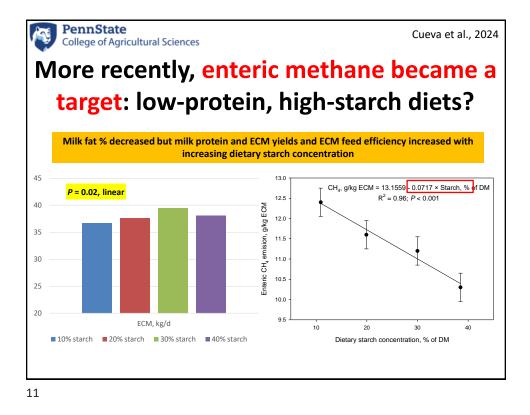


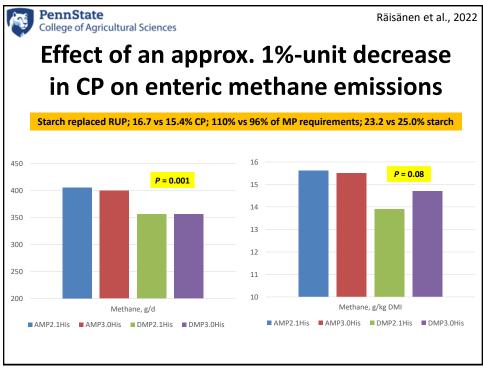


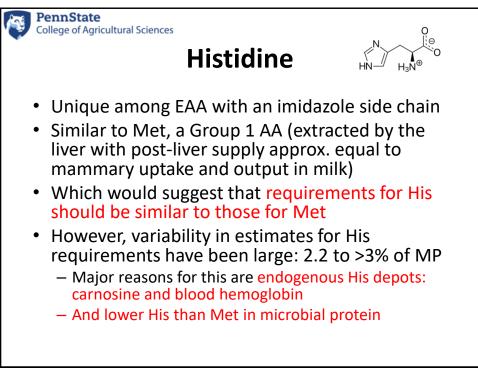


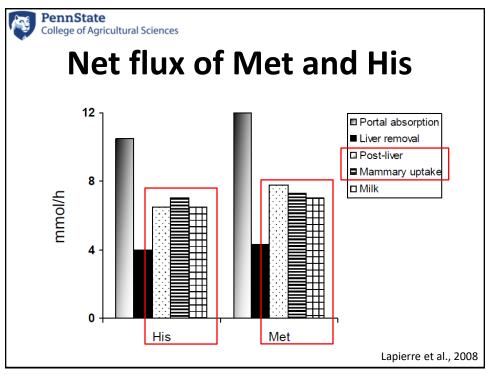


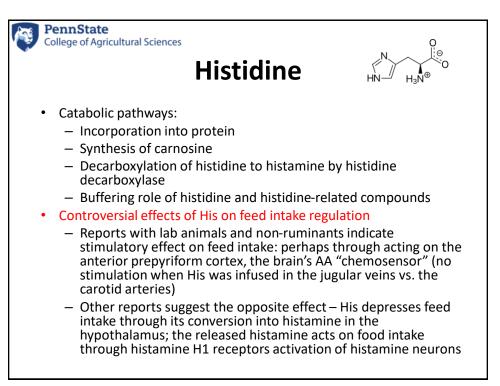


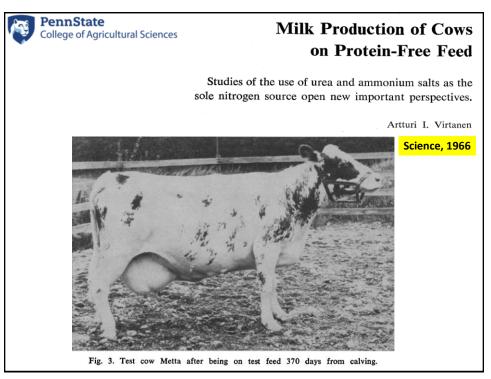


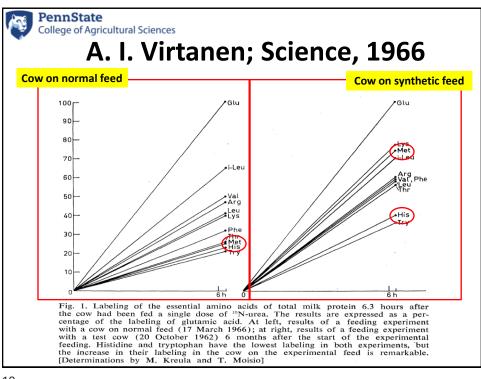


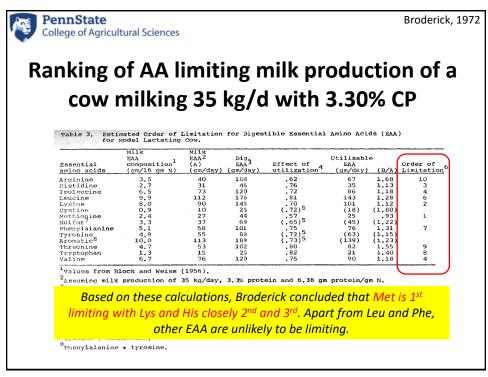


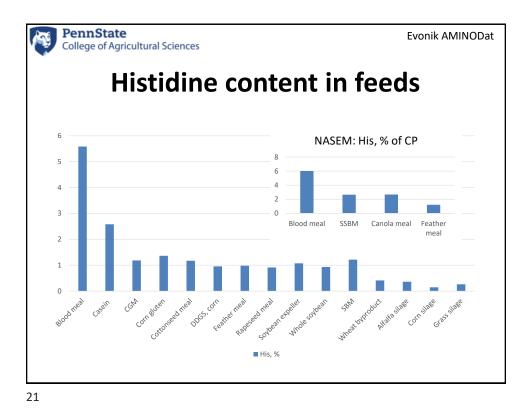


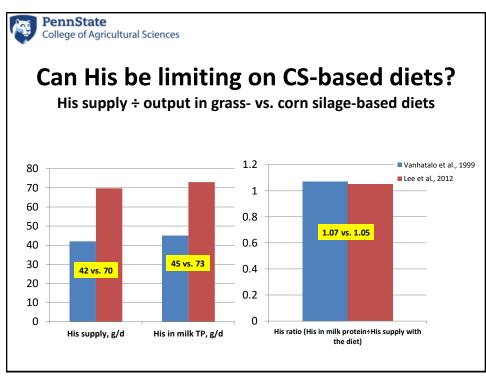


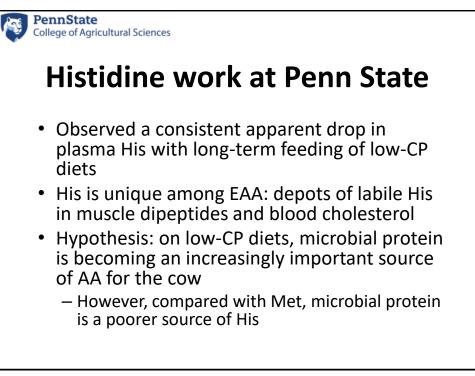


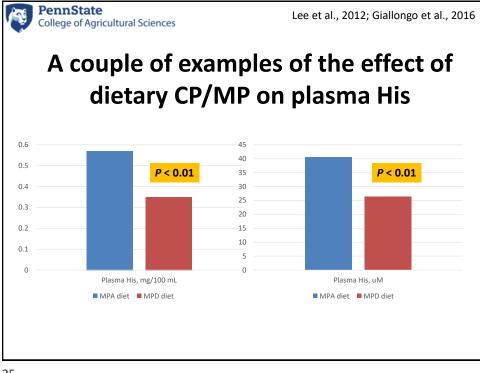


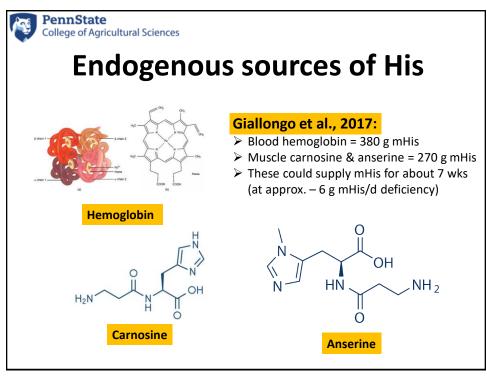

PennState College of Agricult		05			Räisänen et al., 20
College of Agricult	lurai scienc	es			
_				-	
	lict	idine	raca	arch	
	TISL	Iune	rese	dici	
•					•
able 1. Characterization of pub	lightions used i	n the mete analysis			
the 1. Characterization of put	neations used i	ii the meta-analysis			
		Method of His			
ource	$Design^1$	$supplementation^2$	Basal diet	MP-level ³	Other supplemental AA
unhatalo et al. (1999)	LS	Infusion	Grass silage	MPD	Lvs, Met
m et al. (1999)	LS	Deletion	Grass silage	MPA	Lys, Met, Trp
m et al. (2000)	LS	Infusion	Grass silage	MPA	Lys, Met
rhonen et al. (2000)	LS	Infusion		MPA	Lys, Met
	LS	Infusion	Grass silage	MPA	
m et al. $(2001)a^4$			Grass silage		I. M. (17)
m et al. (2001)b	LS	Infusion	Grass silage	MPA	Lys, Met, Trp
ihtanen et al. (2002)a	LS	Infusion	Grass silage	MPD	Leu
ihtanen et al. (2002)b	LS	Infusion	Grass silage	MPD	
drová et al. (2012)	LS	Deletion	Corn silage	MPD	Leu, Lys, Met
e et al. (2012)	RCB	RPHis	Corn silage	MPD	RPLys, RPMet ⁵
allongo et al. (2015)	RCB	RPHis	Corn silage	MPD	RPLys, RPMet
allongo et al. (2016)	RCB	RPHis	Corn silage	MPA	RPLys, RPMet
allongo et al. (2017)	RCB	Basal diet ⁶	Corn silage	MPA	RPLys, RPMet
ng et al. (2019)	LS	RPHis	Corn silage	MPA	RPMet
orris and Kononoff (2020)a	LS	RPHis	Corn silage	MPA	
orris and Kononoff (2020)b	LS	RPHis	Corn silage	MPA	RPLys
pierre et al. (2021)a	LS	Deletion	Corn silage	MPD	Free AA, casein profile
pierre et al. (2021)b	LS	Deletion	Corn silage	MPD	Free AA, casein profile
usänen et al. (2021a)	LS	RPHis	Corn silage	MPA	RPLys, RPMet
	LS	RPHis	Corn silage	MPD	RPLys, RPMet
	LO				
äisänen et al. (2021a) äisänen et al. (2022)a	RCB	RPHis	Corn silage	MPA	RPLys, RPMet

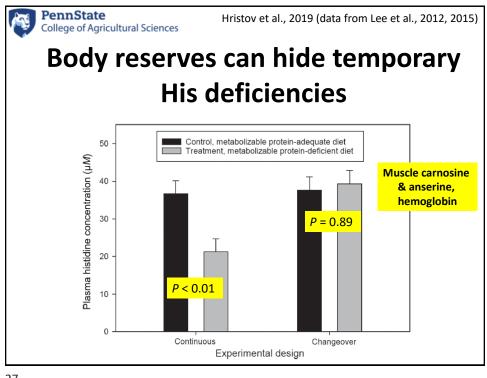


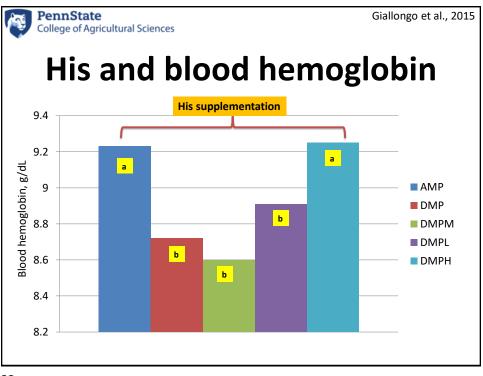


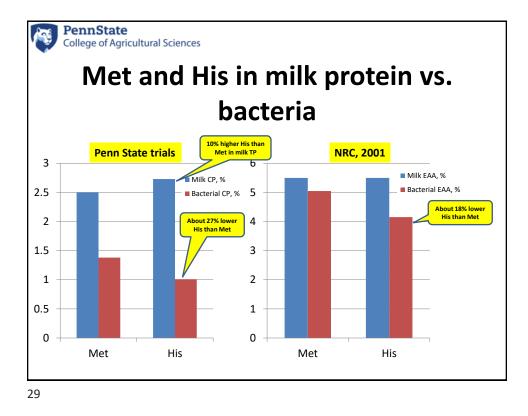


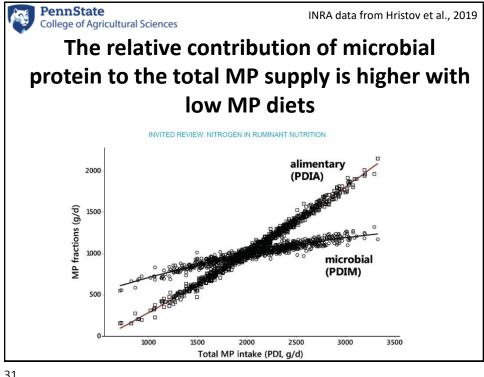


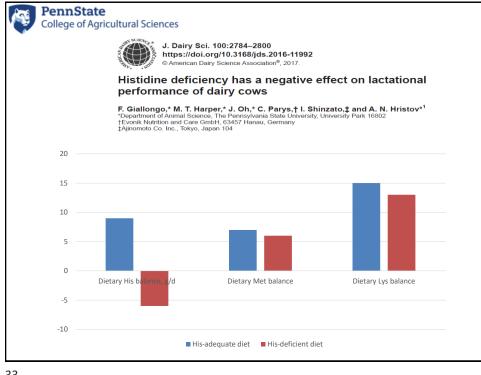


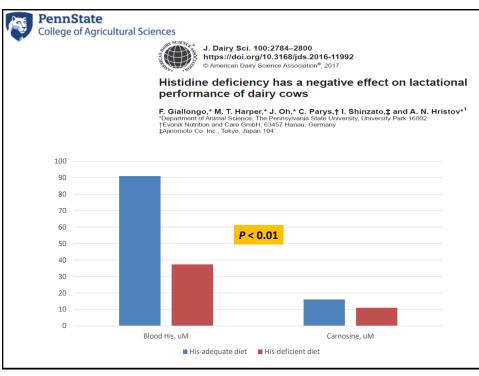

Histidine work at Penn State J. Dairy Sci. 99:6702–6713 http://dx.doi.org/10.3168/jds.2015-10673 © American Dairy Science Association[®], 2016. J. Dairy Sci. 106 https://doi.org/10.3168/jds.2022-22966 © 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the Am This is an open access article under the CC BY license (http://creativecommons.or Effects of slow-release urea and rumen-protected methionine and on mammalian target of rapamycin (mTOR) signaling and ubiquiti proteasome-related gene expression in skeletal muscle of dairy co ected methionine and histidine Lactational performance effects of supplemental histidine in dairy cows: A meta-analysis adri, *†¹ F. Giallongo,‡ A. N. Hristov,‡ J. Werner,§ C. H. Lang,# C. Parys, II B. Saremi, II and H. Sau the of Animal Science, Physiology and Hygiene Unit, University of Born, 53115 Born, Germany S. E. Rillatinen ^{1,2} O. H. Laplarra, ² O. W. J. Price, ⁴ O. and A. N. Hristov,¹ O. Destiment of Animal Science, The Penerghania State University, State Collage, FA 18902 (TH Zbrich, Department of Environment Science, Institute Adjacutural Sciences, Zarich 8092, Switz ³Agriculture and Agri-Food Canada, Shetbrooke, D.C. Canada J1M CG ⁴Institute Informatic University of Idata Mescow, ID State College, Sciences, Zarich 8092, Switz ⁴Institute Informatic University of Idata Mescow, ID State College, Sciences, Zarich 8092, Switz ⁴Institute Informatic University of Idata Mescow, ID State College, Sciences, Zarich 8092, Switz ⁴Institute Informatic University of Idata Mescow, ID State College, Sciences, Sciences science, and Science, and ram. The Pennsylvania litate University University Park 16802 and Molecular Physiology, Penn State College of Medicine, Hentwy, PA 17033 o Ombel, Rodenbacher Chaussee 4, 63457 Hanau, Germany J. Dairy Sci. 95:6042–6056 http://dx.doi.org/10.3168/jds.2012-5581 @ American Dairy Science Association⁶, 2 J. Dairy Sci. 99:4437-4452 http://dx.doi.org/10.3168/jds.2015-10822 © American Dairy Science Association[®], 2016. 2012 Rumen-protected lysine, methionine, and histidine increase Energies of rumen-protected methionine, lysine, and histidine yield in dairy cows fed a metabolizable protein-deficient die on lactation performance of dairy cows C. Lee, * A. N. Hristov, ** T. W. Cassidy, * K. S. Heyler, * H. Lapierre, † G. A. Varga, * M. J. f. Gallongo, * M. T. Harper, * J. Oh, * J. C. Lopes, * H. Lapierre, † R. A. Patton, ‡ C. Parys, § I. Shin and C. Parys# and C. Parys# ce. The Dennestrania State Liniversity Liniversity Dark 18909 J. Dairy Sci. 100:2784–2800 https://doi.org/10.3168/jds.2016-11992 • American Dairy Science Association[®], 2017. J. Dairy Sci. 98:3292-3308 http://dx.doi.org/10.3168/jds.2014-8791 © American Dairy Science Association®, 2015. Histidine deficiency has a negative effect on lactational Effects of slow-release urea and rumen-protected meth performance of dairy cows and histidine on performance of dairy cows F. Giallongo,* M. T. Harper,* J. Oh,* C. Parys,† I. Shinzato,‡ and A. N. Hristov*1 F. Giallongo,* A. N. Hristov,*¹ J. Oh,* T. Frederick,* H. Weeks,* J. Werner,† H. L. Weiss,* J. Werner,† Weiss,* J. Werner,† Weiss,* J. Werner,† H. L. Weiss,* J. Werner,† Weiss,* J. Werner,† H. L. Weiss,* J. Weiss,* J. Werner,† H. L. Weiss,* J. Weiss,* J. Werner,† H. L. Weiss,* J. W hed by Elsevier Inc. and Fass Inc. All rights Histidine dose-response effects on lactational performance and plasma amino acid concentrations in lactating dairy cows: 2. Metabolizable protein-deficient diet J. Dairy Sci. 104:9902–9916 https://doi.org/10.3168/jds.2021-20188 © 2021 American Dairy Science Association®, Publi -cu too on[®], Published by Elsevier Inc. and Fass Inc. All rights 5. E. Raisanen,¹ C. F. A. Lago,^{1,2} M. E. Fetter,¹ A. Melgar,^{1,3} A. M. Pelaez,^{1,4} H. A. Stefenoni,¹ D. E. Was Oneggyer of Annual December The Provide December The Personan Data University. University Park 1997 Histidine dose-response effects on lactational performance of the second and plasma amino acid concentrations in lactating dairy cows: 1. Metabolizable protein-adequate diet Cowst: 1. Metabolizable protein-adequate diet S. E. Raisanen, ¹C. F. A. Lago, ^{1,3}J. Oh, ^{1,3}A. Melgar, ¹A. Medekov, ^{1,5}X. Chen, ^{1,4}M. V digestible histidine and metabolizable protein Department Arking Science, The Pernylvens State University Deversity Para 16800 Chool of Vetering, Medicine, University, University Data 16800 Chool of Vetering, Medicine, University, University Data 16800 Chool of Vetering, Medicine, University, University, University Para 16800 Chool of Vetering, Medicine, University, University, University Para 16800 Chool of Vetering, Medicine, Tareka 140, Metrico C, T. Kasay, ¹⁴A. K. Heritor C, ¹⁴A. Metrico C, ¹⁴A. M S. E. Raisänen, ¹* C. F. A. Lage, ¹²† C. Zhou, ¹³ A. Meigar, ¹⁴ T. Silvestre, ¹ D. E. Wasson, ¹ S. F. Cueva, J. Werner, ¹T. Takagi, ⁴ M. Miura, ¹ and A. N. Hristov¹ ‡ Department dramat Educor. The Prencyland State University, Jones 16002

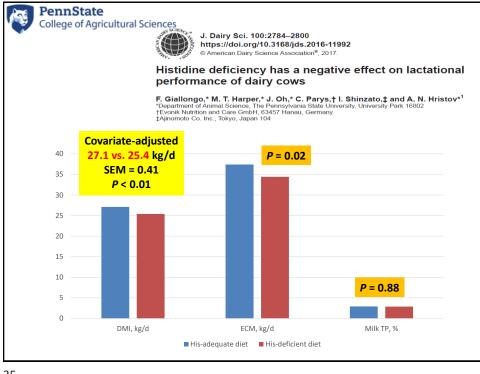


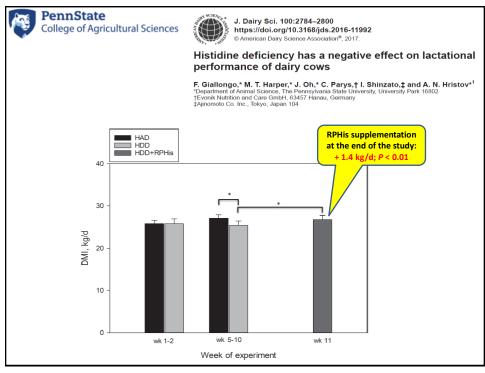


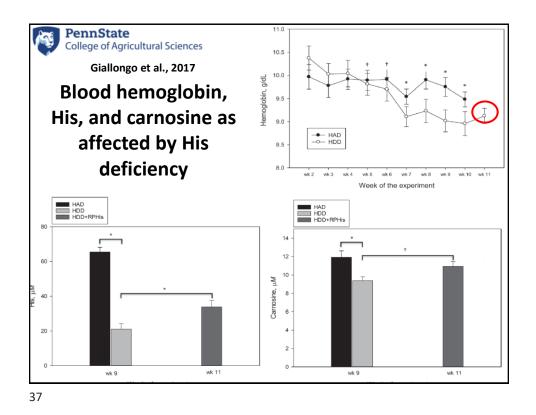


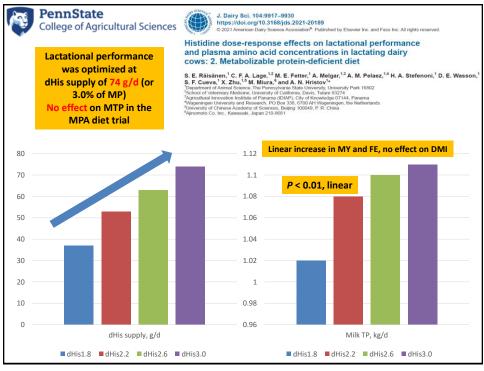


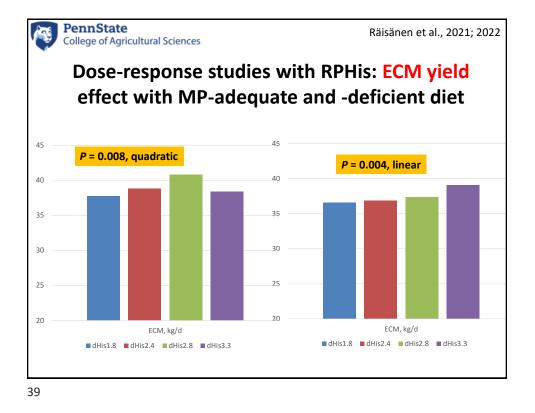


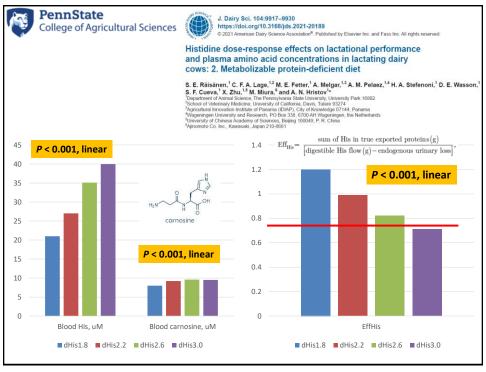

	NASEN	1 (202	21) A	A comp	osition	of	
	_	=	-	-		-	
		mic	robia	al prote	IN		
				•			
	g AA _{corr} /100 g CP			$g AA_{corr}/100 g TP^a$		g AA	00 g T
AA	Duodenal Endogenous	Microbial ^c	Scurf	Whole Empty Body	Metabolic Fecal	Milk	
Ala	4.69	7.38	1.00/ 1.	ower His	6.32	3.59	
Arg	4.61	5.47			5.90	3.74	
Asx	4.75	13.39	tha	n Met	7.56	8.14	
'ys	2.58	2.09	7/	1.74	3.31	0.93	
3lx	11.31	14.98	14.69	15.76	15.67	22.55	
Gly	5.11	6.26	21.08	14.46	8.45	2.04	
His	2.90	2.21	1.75	3.04	Only 4%	2.92	
Ile	4.09	6.99	2.96	3.69	· ·	6.18	
Leu	7.67	9.23	6.93	8.27	difference	10.56	
Lys	6.23	9.44	5.64	7.90	7.61	8.82	
Met	1.26	2.63	1.40	2.37	1.73	3.03	
Phe	3.98	6.30	3.61	4.41	5.28	5.26	
Pro	4.64	4.27	12.35	9.80	8.43	10.33	
Ser	5.24	5.40	6.45	5.73	7.72	6.71	
Thr	5.18	6.23	4.01	4.84	7.36	4.62	
Trp	1.29	1.37	0.73	1.05	1.79	1.65	
Tyr	3.62	5.94	2.62	3.08	4.65	5.83	
Val	5.29	6.88	4.66	5.15	7.01	6.90	1

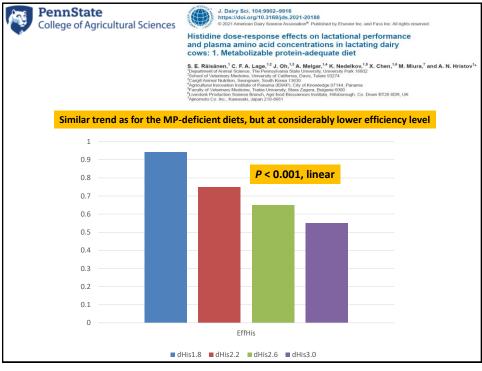


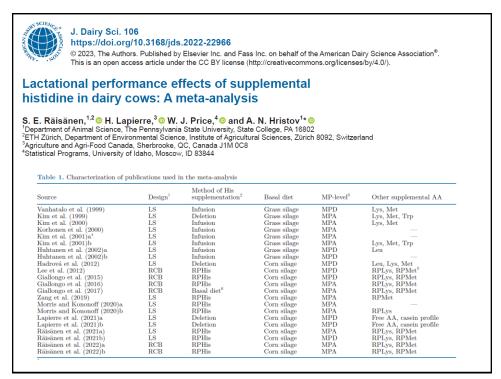

PennState College of Agricu	Itural Sciences	2021 sin	nulatio	าร
	BW Holstein cow, 1			
Diet CP, %	Proportion of microbial MP	Total mHis, g/d	mHis efficiency (target is 0.75)	N excretions, g/d
15.1	0.58	56	1.04	402
17.2	0.53	67	0.87	488
18.4	0.51	73	0.80	539
	0.7 0.6 0.5 0.4 0.3 0.2 0.1			
		Micr Prot contr to MP flo	W W	

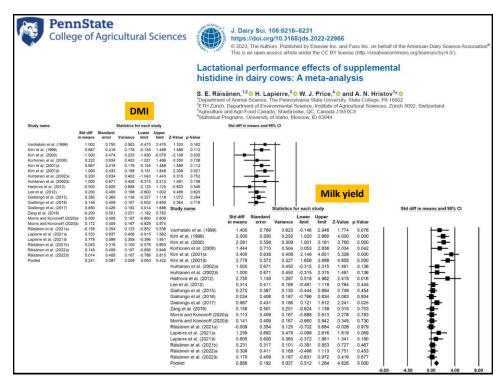


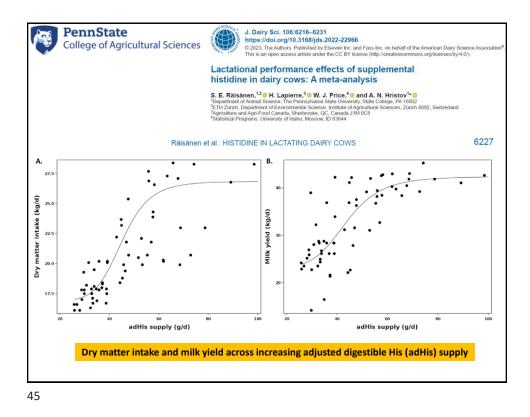


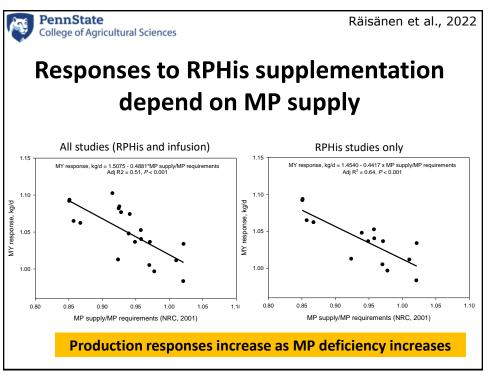


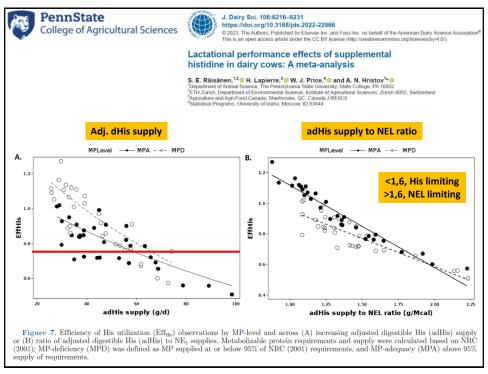


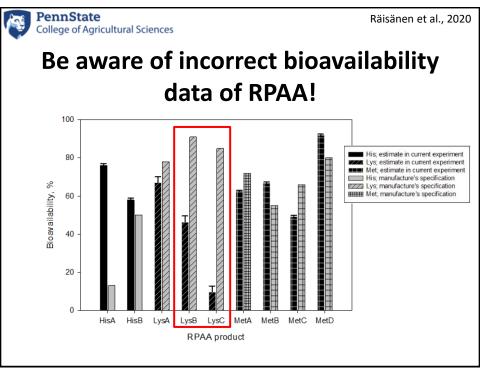



College of Agr		l Sciences		© 2023, The Authors. Pu	blished by Elsevier Inc. ar rticle under the CC BY lice	nd Fass Inc. on behalf ense (http://creativeco supplement	mmons.org/licenses/by/4	
			¹ Department o ² ETH Zürich, D ³ Agriculture an	nen, ¹² H. Lapierre f Animal Science, The Per Department of Environmen d Agri-Food Canada, She grams, University of Idaho	nnsylvania State Universit tal Science, Institute of Ag rbrooke, QC, Canada J1N	y, State College, PA 1 pricultural Sciences, Z	3802	
Table 4. Effect size ¹ and h	eterogenei	ty for the effec				mance of dairy		ropoity
Table 4. Effect size ¹ and h Item	eterogeneit N ²	ty for the effec		plementation on Effect size and 95 Lower limit	% CI	mance of dairy	cows Heterog O-value ³	geneity P-value
tem	N^2	Random	SE	Effect size and 95 Lower limit	% CI Upper limit	P-value	Heterog Q-value ³	<i>P</i> -value
tem DMI, kg/d	N ² 22	Random 0.241	SE 0.097	Effect size and 95 Lower limit 0.050	% CI Upper limit 0.432	<i>P</i> -value 0.01	Q-value ³ 21.4	<i>P</i> -value 0.44
tem DMI, kg/d filk vield, kg/d	N^2 22 22	Random 0.241 0.888	SE 0.097 0.192	Effect size and 95 Lower limit 0.050 0.512	% CI Upper limit 0.432 1.26	<i>P</i> -value 0.01 <0.001	Q-value ³ 21.4 69.4	<i>P</i> -value 0.44 <0.001
em MI, kg/d filk vield, kg/d CM yield, ⁴ kg/d	N^2 22 22 14	Random 0.241 0.888 0.187	SE 0.097 0.192 0.115	Effect size and 95 Lower limit 0.050 0.512 -0.039	% CI Upper limit 0.432 1.26 0.413	<i>P</i> -value 0.01 <0.001 0.11	Heterog Q-value ³ 21.4 69.4 8.78	<i>P</i> -value 0.44 <0.001 0.85
em MI, kg/d filk vield, kg/d CM yield, ⁴ kg/d filk true protein, %	N^2 22 22	Random 0.241 0.888	SE 0.097 0.192	Effect size and 95 Lower limit 0.050 0.512	% CI Upper limit 0.432 1.26	<i>P</i> -value 0.01 <0.001 0.11 0.02	Heterog Q-value ³ 21.4 69.4 8.78 23.9	P-value 0.44 <0.001 0.85 0.30
em Iilk vield, kg/d CM yield, ⁴ kg/d Iilk true protein, % Iilk true protein, %/d	$\frac{N^2}{22} \\ \frac{22}{14} \\ 22$	Random 0.241 0.888 0.187 0.246	SE 0.097 0.192 0.115 0.104	Effect size and 95 Lower limit 0.050 0.512 -0.039 0.041	% CI Upper limit 0.432 1.26 0.413 0.450	<i>P</i> -value 0.01 <0.001 0.11	Heterog Q-value ³ 21.4 69.4 8.78 23.9 42.8	P-value 0.44 <0.001 0.85 0.30 0.003
em MI, kg/d lilk vield, kg/d CM yield, ⁴ kg/d lilk true protein, <i>%</i> lilk true protein, <i>kg</i> /d lilk tru, <i>%</i>	N ² 22 22 14 22 22 22 22 22	Random 0.241 0.888 0.187 0.246 0.674	SE 0.097 0.192 0.115 0.104 0.147	Effect size and 95 Lower limit 0.050 0.512 -0.039 0.041 0.386	% CI Upper limit 0.432 1.26 0.413 0.450 0.962 -0.195	P-value 0.01 <0.001 0.11 0.02 <0.001	Heterog Q-value ³ 21.4 69.4 8.78 23.9	P-value 0.44 <0.001 0.85 0.30
em DMI, kg/d CM yield, kg/d filk true protein, % filk true protein, kg/d filk fat, % filk fat, kg/d	N ² 22 22 14 22 22	Random 0.241 0.888 0.187 0.246 0.674 -0.427	SE 0.097 0.192 0.115 0.104 0.147 0.119	Effect size and 95 Lower limit 0.050 0.512 -0.039 0.041 0.386 -0.660	% CI Upper limit 0.432 1.26 0.413 0.450 0.962	P-value 0.01 <0.001 0.11 0.02 <0.001 <0.001	Heterog Q-value ³ 21.4 69.4 8.78 23.9 42.8 29.7	$\begin{array}{c} P \text{-value} \\ \hline \\ 0.44 \\ < 0.001 \\ 0.85 \\ 0.30 \\ 0.003 \\ 0.10 \end{array}$
	N ² 22 22 14 22 22 22 22 22 22	Random 0.241 0.888 0.187 0.246 0.674 -0.427 -0.009	SE 0.097 0.192 0.115 0.104 0.147 0.119 0.096	Effect size and 95 Lower limit 0.050 0.512 -0.039 0.041 0.386 -0.660 -0.197	% CI Upper limit 0.432 1.26 0.413 0.450 0.962 -0.195 0.178	P-value 0.01 0.11 0.02 <0.001 <0.001 0.92	Heterog Q-value ³ 21.4 69.4 8.78 23.9 42.8 29.7 12.6	$\begin{array}{c} P \text{-value} \\ \hline P \text{-value} \\ < 0.001 \\ 0.85 \\ 0.30 \\ 0.003 \\ 0.10 \\ 0.92 \end{array}$


Number of studies


³Chi-squared (Q) test for heterogeneity and variation among the study level.


⁴Six studies were excluded from the analysis due to lack of ECM data and respective SD in the publication.



- Long-term trials showed that supplementation of such diets with rumen-protected His increased or tended to increase milk yield and milk protein percent and yield, partially through increasing DMI
- Our data suggest dHis recommendations at around 3.0% of MP, or 70-74 g/d
- Watch for false bioavailability data
- Order and degree of AA limitation will likely depend on EAA profile of RUP
- The effects of low-protein, high-starch diets on enteric methane emission and overall carbon footprint of milk needs to be further examined

