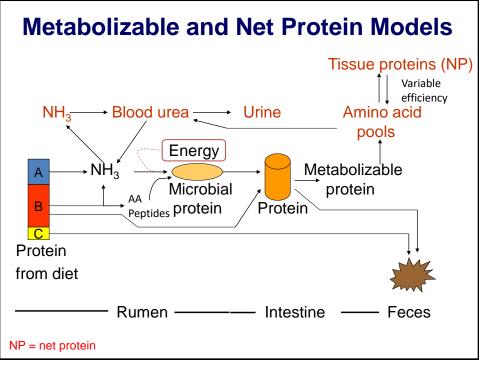
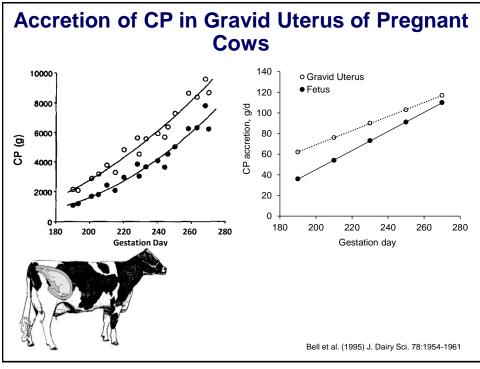
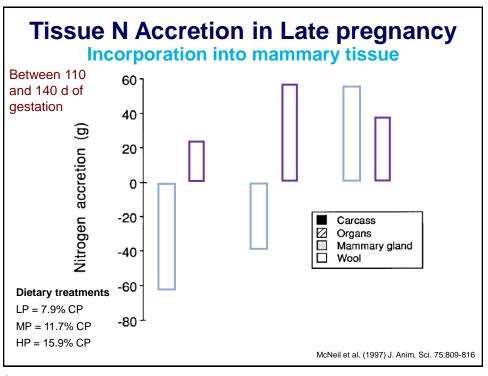
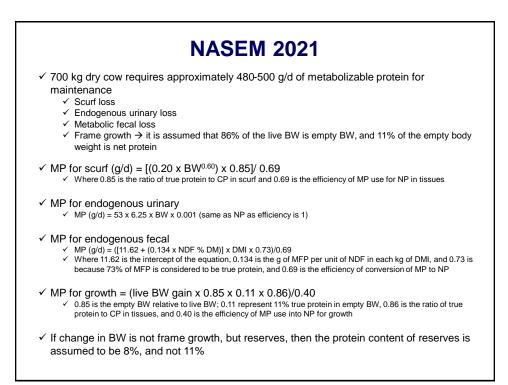
Protein Nutrition of Transition Cows and Amino Acid Balancing in Early Lactation

José Eduardo P. Santos University of Florida

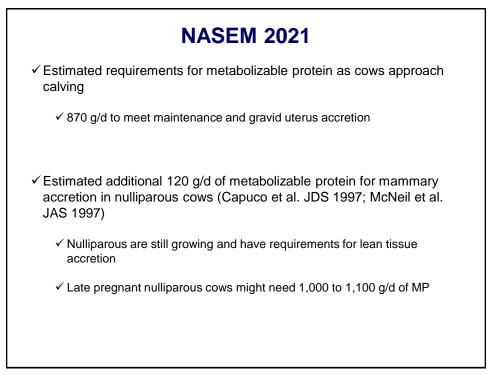

Gainesville, USA



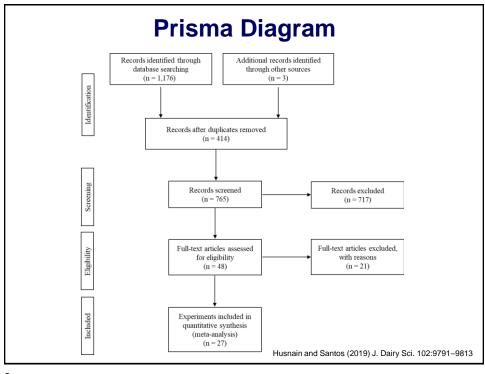


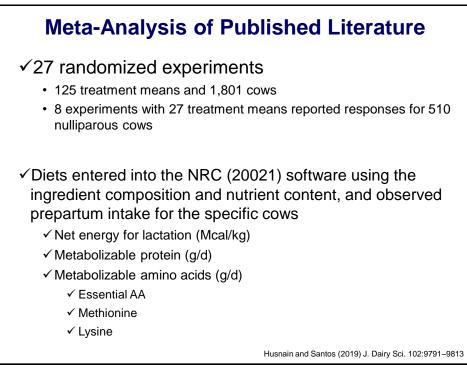

1

SCIENCES



NASEM 2021
 ✓ Metabolizable protein needed for gravid uterus accretion ✓ 125 g of net protein per kg of gravid uterus gain ✓ 230 d of gestation = 190 g/d ✓ 250 d of gestation = 260 g/d ✓ 270 d of gestation = 360 g/d
 ✓ Efficiency of incorporation of MP into net protein (NP) in the gravid uterus is 33%
 ✓ At 250 days of gestation, the cow would need ✓ 480 g of MP for maintenance ✓ 260 g of MP for pregnancy ✓ Total = 740 g/d of MP (410 g/d of NP) ✓ Plus any additional MP for frame growth replenishment of body reserves
 ✓ At 270 days of gestation, the cow would need ✓ 480 g of MP for maintenance ✓ 381 g of MP for pregnancy ✓ Total = 864 g/d of MP (535 g/d of NP) ✓ Plus any additional MP for frame growth replenishment of body reserves

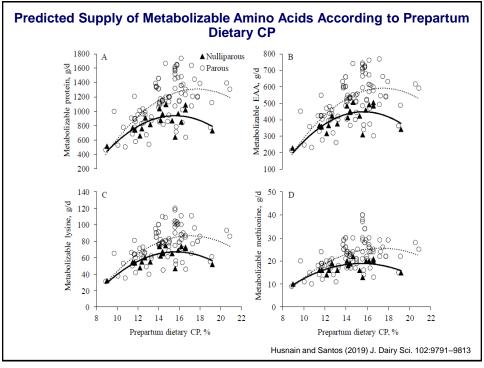


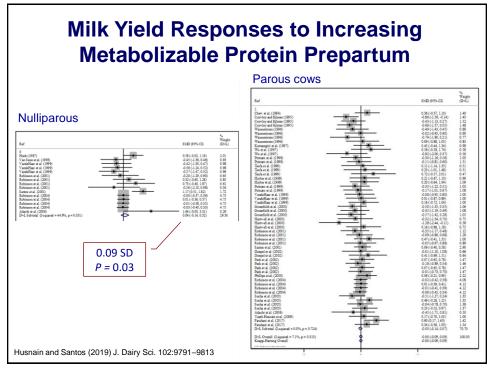

Factorial Protein Needs of a Prepartum Cow

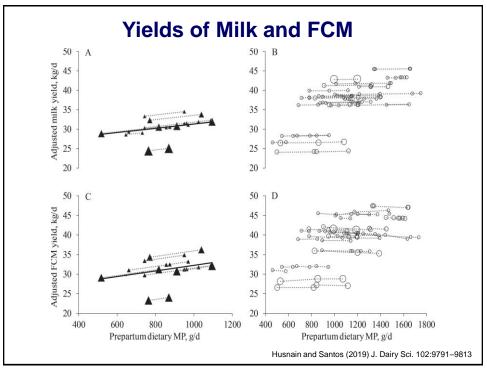
Cow: 50-mo old Holstein, 270 d of gestation, 720 kg BW, 0.1 kg/d frame growth, eating 12.5 kg of DM with 44% NDF

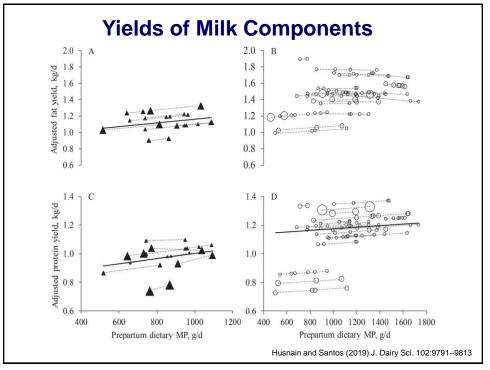
Heifer: 22-mo old Holstein, 270 d of gestation	, 620 kg BW, 0.8 kg/d frame growth,	eating 11.0 kg of DM with
44% NDF		

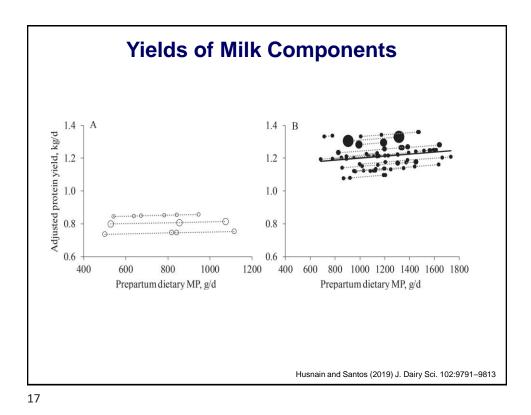
Net protein Metabolizable			ble proteir
Heifer	Cow	Heifer	Cow
8	9	12	13
205	240	205	240
138	158	200	230
77	8	112	12
0	0	0	0
119	126	360	381
547	541	890	876
	Heifer 8 205 138 77 0 119	Heifer Cow 8 9 205 240 138 158 77 8 0 0 119 126	HeiferCowHeifer8912205240205138158200778112000119126360






Descriptive Statistics of Protein Inputs


Item	TRT Means, n	Mean	SD	Median	Min	Max
NE _L , Mcal/kg	114	1.59	0.10	1.62	1.25	1.73
CP, %	114	14.3	2.1	14.4	9.0	20.9
RDP, % DM	114	9.6	1.2	9.5	5.5	12.2
RUP, % DM	114	4.7	1.4	4.6	2.7	9.0
CP intake, g/d	114	1,681	407	1,648	745	2,482
Metabolizable, g/d						
Total MP	114	1,100	290	1,091	463	1,733
Microbial CP	114	603	119	601	257	876
RUP	114	446	190	425	159	937
Met	114	22	6	21	9	40
Lys	114	76	18	75	31	120
Total EAA	114	505	125 Husnain and	505 Santos (2019)	211 J. Dairy Sci. 10	766 2:9791–9813


	Nullipa	arous	Parc	ous	
Item	TRT Means, n	Mean ± SD	TRT Means, n	Mean ± SD	
Prepartum					
DMI, kg/d	12	10.1 ± 0.8	76	12.4 ± 2.2	
BW, kg	12	606 ± 25	66	700 ± 50	
Postpartum					
DMI, kg/d	6	17.0 ± 1.6	70	20.7 ± 2.7	
Yield, kg/d					
Milk	25	31.6 ± 3.2	89	38.5 ± 4.6	
FCM	25	32.0 ± 3.5	89	40.5 ± 4.6	
Milk fat					
%	25	3.65 ± 0.23	89	3.88 ± 0.38	
kg/d	25	1.14 ± 0.12	89	1.48 ± 0.18	
Milk protein					
%	25	3.21 ± 0.11	87	3.07 ± 0.17	
kg/d	25	1.01 ± 0.11	87	1.18 ± 0.12	
BW, kg	8	542 ± 26	82	622 ± 31	

Conclusion and Implications Formulate diets based on supply of metabolizable protein Parous cows: 800 to 900 g/d seems sufficient to meet the needs and to support postpartum performance (12 to 13% CP is sufficient is adequate

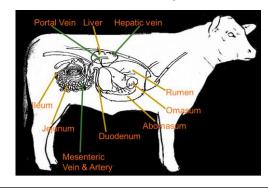
- ✓ Nulliparous require more than parous cows. At this point, approximately 1,100 g/day (14 to 15% CP is needed, with added undegraded protein source)
- ✓ If housed together, feed for the nulliparous cows

intake of DM is achieved)

✓Limited to no data today in the literature to support health effects of manipulating prepartum dietary protein content

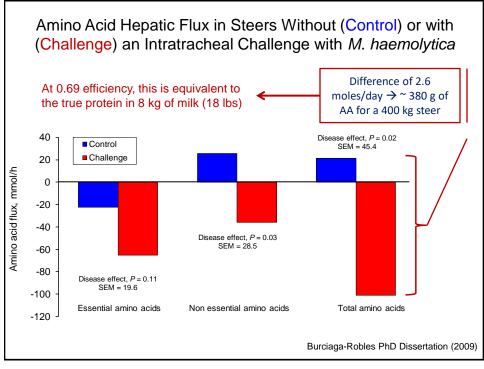
Issues Start Before or Around Calving

19

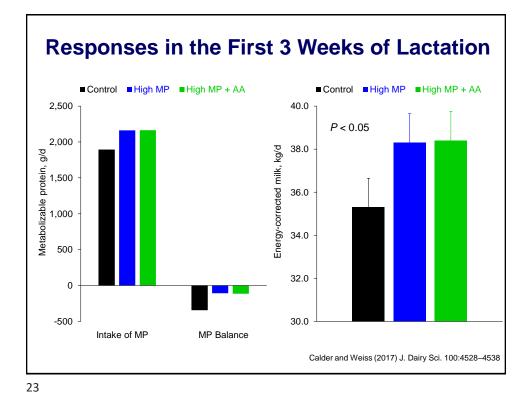

Inflammatory Disease and Nutrient Flux

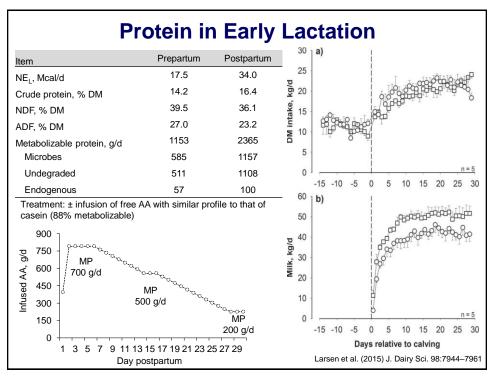
✓ Control

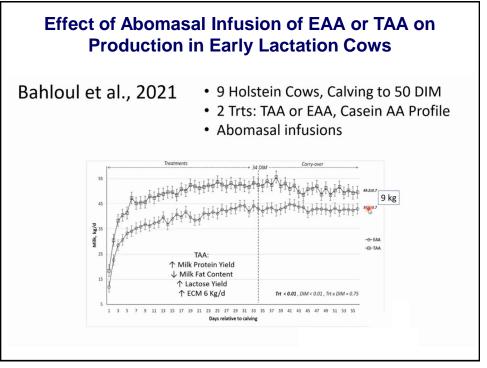
✓ Steers received saline (no inflammation)

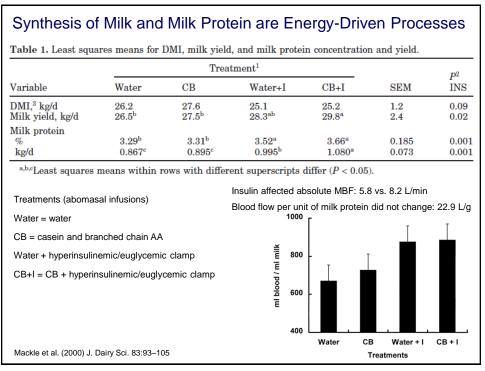

✓ Challenge

 ✓ Intra-tracheal challenge with 10 mL containing 1 x 10⁹ CFU of Mannheimia haemolytica at hour 0

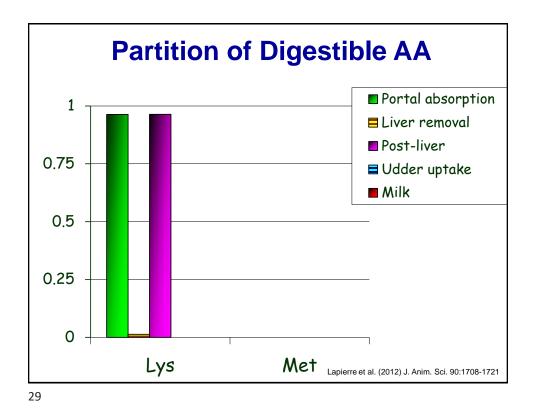


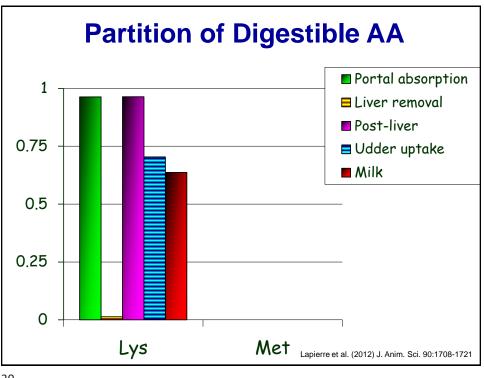


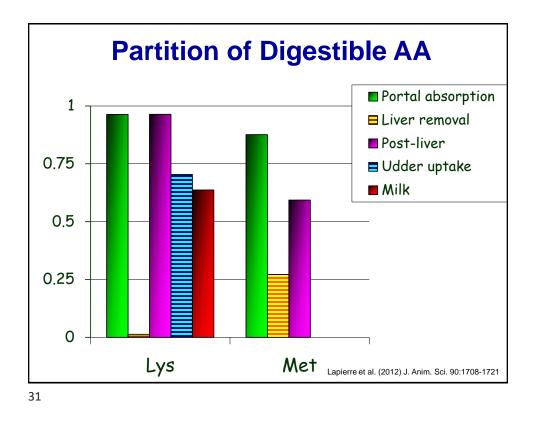

Burciaga-Robles et al. (2009)

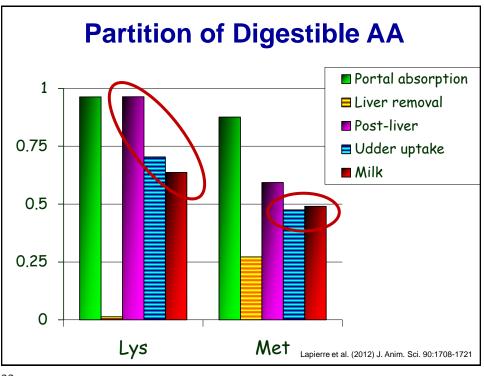


		Treatment	
ngredients	Control	High MP	High MP + AA
Corn silage	40.0	40.0	40.0
Alfalfa silage + alfalfa hay	17.0	17.0	17.0
Whole cottonseed	9.0	9.0	9.0
Ground corn	15.7	14.0	15.7
Soybean hulls	4.4	1.9	4.4
Soybean meal (48%)	9.0	7.1	8.7
Heat-treated SBM (AminoPlus)	2.0	7.0	
Corn gluten meal (60%)		1.6	
Blood meal + AA			2.3
Fat + Minerals and Vitamins	3.0	2.8	2.8
lutrients			
Crude protein, %	16.3	18.4	17.4
Rumen degradable protein, %	10.7	11.3	10.2
Methionine, % MP	1.85	1.83	2.60
Lysine, % MP	6.68	6.33	7.20
Histidine, % MP	2.25	2.21	2.90

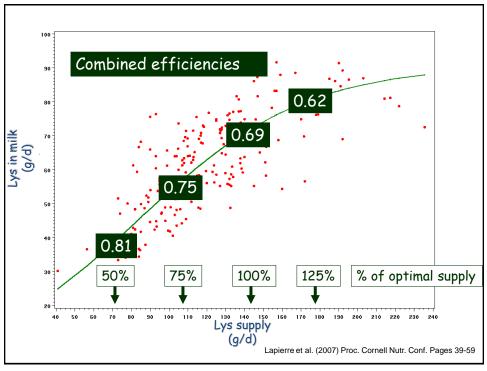


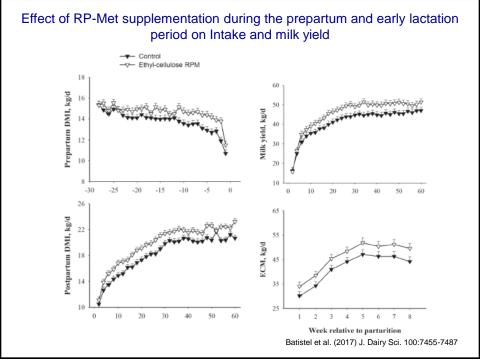



	Sh	eep ^a	Dairy cowb		
Amino acid	MDV:SID	PDV:MDV	MDV:SID	PDV:MDV	
Histidine	-	-	1.27	0.75	
Isoleucine	1.11	0.55	1.02	0.61	
Leucine	1.02	0.64	0.92	0.68	
Lysine	1.03	0.56	0.76	0.72	
Methionine	-	-	1.01	0.66	
Phenylalanine	1.12	0.68	1.00	0.76	
Threonine	0.85	0.69	1.15	0.38	
Valine	0.76	0.57	1.11	0.46	
From MacRae <i>et</i> From Berthiaume					

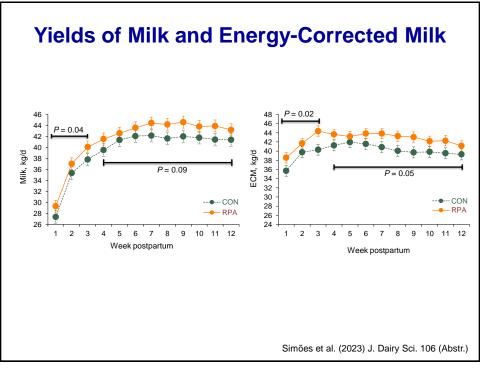

 Table 19.3.
 Relative net fluxes of amino acids across the mesenteric-drained viscera (MDV), the portal-drained viscera (PDV) and small intestinal disappearance (SID) in sheep and dairy cows.

	roportion of net portal ab I by the liver in non-lacta	
Amino acid	Non-lactating cows ^a	Lactating cow ^b
Histidine	0.57	0.28
Isoleucine	0.41	n.r.c
Leucine	0.01	n.r.c
Lysine	0.16	0.06 ^d
Methionine	0.70	0.43
Phenylalanine	0.67	0.50
Threonine	0.72	0.11
Valine	0.12	n.r.°
^b From Blouin ^c Net removal I	ahen <i>et al.</i> (1997), basal <i>et al.</i> (2002) and Berthiau by the liver zero. m Blouin <i>et al.</i> (2002).	




Efficiency of Incorporation of Mammary Extracted AA into Milk AA

	Amino aci	d group (Meph	am, 1982)
	1	2	3
	Histidine	Isoleucine	Alanine
	Phenylalanine	Leucine	Asparagine
	Methionine	Valine	Cysteine
	Tyrosine	Lysine	Glutamine
	Tryptophan	Arginine*	Glycine
		Threonine*	Proline
			Serine
Efficiency (AA-N uptake/ AA-N secreted in milk)	1	> 1.15	< 1.0


33

		Treat	ment		-						
	C	CON RPA		CON RPA		CON				<i>P</i> -val	ue
Item	Null	Parous	Null	Parous	SEM	TRT	Parity	TRT x parity			
Yield, kg	5.38	5.16	8.52	7.19	1.23	0.02	0.51	0.69			
Fat, kg	0.405	0.256	0.677	0.401	0.07	< 0.001	0.001	0.26			
True protein, kg	1.01	1.03	1.33	1.25	0.16	0.03	0.82	0.67			
Lactose, kg	0.200	0.184	0.238	0.244	0.03	0.05	0.86	0.68			
Total solids, kg	1.71	1.58	2.39	2.02	0.26	0.01	0.29	0.58			

Protein in Early Lactation
✓ Early lactation
✓ Feed diets with 17 to 18% CP to result in ~11.5 to 12% MP
✓ 11% of the diet DM should be degraded protein
\checkmark 6 to 7% of the diet DM should be undegraded protein
 Prioritize high quality rumen undegraded protein sources that complement microbial protein
✓ Blood meal of high intestinal digestibility
✓ Heat-treated soybean meal or canola meal
 ✓ RP Methionine and Lysine should be incorporated into early lactation diets ✓ 2.50% of MP (1.14-1.19 g/Mcal of ME) as methionine and 7.50% of MP (3.03 g/Mcal of ME) as lysine
 ~5.5% of EAA as methionine and ~15.0% of EAA as lysine
 Remember, improving protein supply will stimulate milk synthesis, which will likely increase body fat mobilization in the first 2 to 4 weeks of lactation

