

Typical Daily Time Budget of a Lactating Dairy Cow

Activity	Time devoted to activity per day			
Eating	3 to 5 h (9 to 14 meals/d)			
Lying/resting	12 to 14 h			
Social interactions	2 to 3 h			
Ruminating	7 to 10h			
Drinking	30 min			
Outside pen (milking, travel time)	2.5 to 3.5 h			

(Adapted from Grant and Albright, 2000).

5

Behavioral Coping Strategies in Lactating Cows Exposed to Heat Stress

↓ Activity andMovement

Modified Drinking and Eating Behaviors

↓ Dry Matter Intake

↑ Standing time

↓ Rumination time

Behavior Measurements

· Leg Tag:

Measure lying time, standing time, walking and standing events

· Neck Tag:

Measure eating time and rumination time

Acclimation Period

7

Effects of Exposure to Heat Stress During Late Gestation on the Daily Time Budget of Nulliparous Holstein Heifers

Toledo I.M., Ouellet V., Davidson B.D., Dahl G.E., and Laporta J. 2022. Effects of exposure to heat stress during late gestation on the daily time budget of nulliparous Holstein heifers. Front. Anim. https://doi.org/10.3389/fanim.2022.775272

Hypothesis

Exposure of pregnant nulliparous Holstein heifers to hyperthermia during late gestation induces behavior modifications that have lingering effects during lactation.

9

Objectives

To characterize natural behaviors of nulliparous Holstein heifers 60 d pre-and postpartum and examine the effects of late gestation heat stress on those behaviors.

Design and Management

- 25 multiparous lactating Holstein heifers (~60 d before expected calving)
- Measurements recorded for each cow during 60 d pre and postpartum
- **Temperature and Humidity Index:** was assessed during the entire study period through HOBO devices.
- Physiological measurements: Davidson et al., J. Dairy Sci. 104:2357-2368.


11

Design and Management

Cool Treatment (n=12)

Sand bedded free stalls

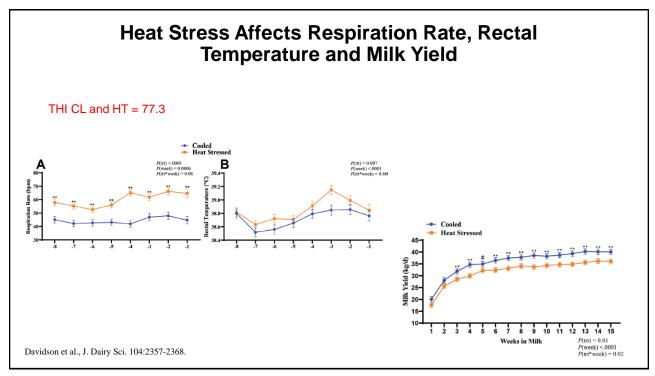
Heat Stress Treatment (n=13)

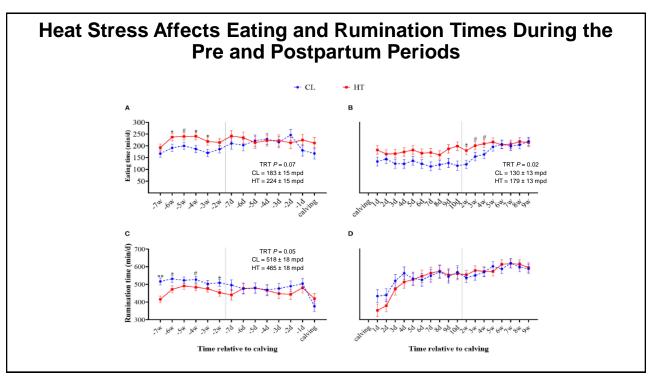
Design and Management

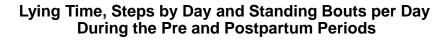
· Leg Tag:

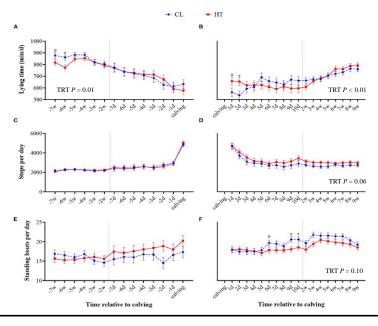
Measure lying time, standing time, walking and standing events

Neck Tag:


Measure eating time and rumination time


• Acclimation Period: 7 days after leg and neck tags were placed





Heat Stress Affects Eating Frequency and Meal Sizes during the Pre and Postpartum Periods

- Eating frequency of HT and CL heifers was similar during pre- and postpartum.
- HT had larger meals at night during both the pre- and postpartum periods compared to CL heifers.

Eating, Rumination, and Lying times (min/d) of Late Gestation Nulliparous Heifers and Late Gestation Dry Cows

	Late-gestation Nulliparous Heifers ¹		Calving week Nulliparous Heifers ²		Late-gestation cows ³		
Behavior/Treatments ⁴	CL/TN	HT	CL/TN	HT	CL/TN	HT	References
Eating, min/d							
	183	224	209	223	166	147	Karimi et al., 2015
					205	_	Schirmann et al., 2013
Rumination, min/d							
	518	465	471	456	655	_	Ouellet et al., 2016
					283	243	Karimi et al., 2015
Lying, min/d							
	854	817	687	689	962	-	Jensen et al., 2012
					1050	966	Karimi et al., 2015
					768	_	Ouellet et al., 2016

¹Behaviors automatically recorded from 7 to 2 weeks before calving in the present study

19

Eating, Rumination, and Lying Times (min/d) in Postpartum Nulliparous Heifers and Lactating Cows

	Postpartum Nulliparous Heifers ¹		Calving week Nulliparous Heifers ²		Lactating cows ³		
Behavior/Treatments ⁴	CL/TN	HT	CL/TN	HT	CL/TN	HT	References
Eating, min/d	130	179	180	209	224	-	King et al., 2016
Rumination, min/d	511	496	588	593	340–410 535–545	- 493–520	Pahl et al., 2015 Müschner-Siemens et al., 2020
Lying, min/d	637	604	666	638	660–720 600 540	- 480 360	Cook et al., 2004b Cook et al., 2007 Nordlund et al., 2019

¹Behaviors automatically recorded from 0 to 10 days postpartum in the present study

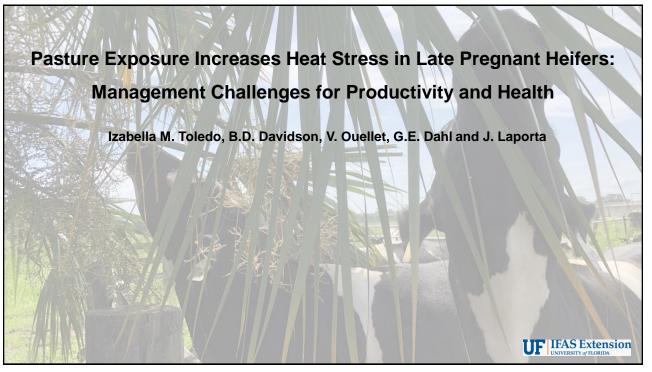
²Behaviors automatically recorded during the last 7 days before calving in the present study

³Behaviors automatically recorded during the 3 weeks before calving or last 7 days before calving retrieved in different studies

⁴CL/TN = animals exposed to active cooling by fans and soakers or housed in thermoneutral conditions; HT = animals deprived of cooling or exposed to high temperature-humidity index

²Behaviors automatically recorded from 2 to 9 weeks postpartum in the present study

³Behaviors automatically recorded during in lactating multiparous cows


⁴CL/TN = animals exposed to active cooling by fans and soakers or housed in thermoneutral conditions during the last 60 days of gestation; HT = animals deprived of cooling or exposed to high temperature-humidity index during last 60 days of gestation

Summary

- Heat stress during the last 60 d of gestation altered the behavior of nulliparous heifers and had lingering effects after parturition.
- Heat-stressed heifers adapted their behavior by increasing feeding time and meal size at night and by reducing rumination and lying during the prepartum period.

21

Objective

To have a better understanding of how heat stress affects the daily time budget of late gestation dairy heifers in order to adapt management practices in adverse conditions.

23

Design and Management

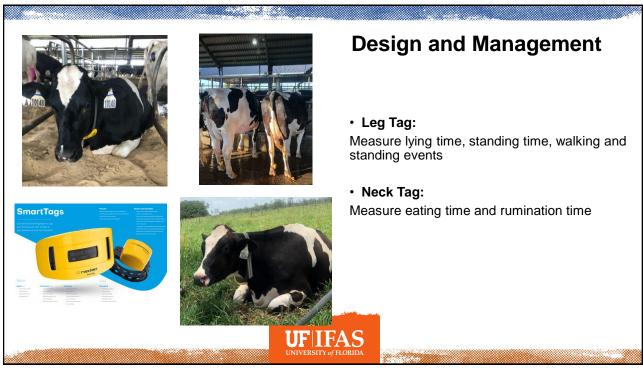
- · 17 Holstein dairy heifers
- Treatments:
 - Pasture (PA; n= 6)
 - Heat Stress (HT; n=6)
 - Cooling (CL; n=5)
- Study Period: measurements were recorded for each cow for 14 days
- · Respiration Rate (breaths/min) were recorded thrice weekly
- Temperature and Humidity Index was measured during the entire study through HOBO devices.
- Black Globe Temperature was measured during the entire study period by using a black globe temperature sensor.

Design and Management

Heat Stressed Heifers:

· Sand bedded free stalls

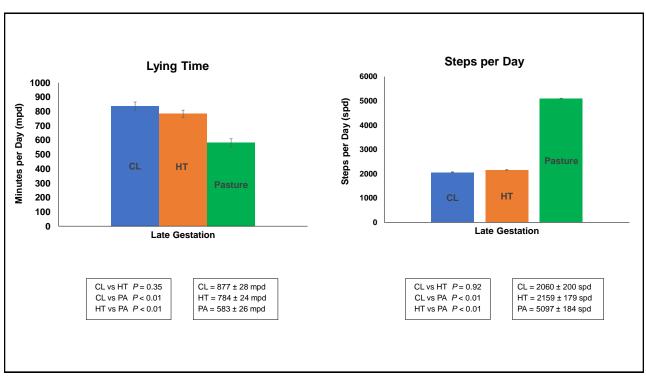
Cooled Heifers:


- · Sand bedded free stalls
- · Fans over stalls
- · Soakers over feedline
- Fans on at 70° F (21.1°C)
- Soakers on 1 min every 5 min at 72° F

Pastured Heifers:

Portable shade shelters

25



Temperature-Humidity Index, Black Globe Temperature and Respiration Rate During the Study Period

- Temperature-Humidity Index averaged 78.0 in the pasture and 77.3 in the free-stall barn
- Black Globe Temperature averaged 29 °C
- Respiration Rates (P < 0.01)
 - Cooled Heifers: 48 ± 2.11 bpm
 - Heat Stressed Heifers: 61 ± 8.69 bpm
 - Pastured Heifers: 96 ± 2.14 bpm

Summary

- Exposure to heat stress during late gestation affects the daily time budget of first lactation heifers, especially if they are kept in pasture conditions.
- Insights onto heat stress effects in the daily time budget of late gestation heifers may contribute to the development of more effective management strategies to decrease the possible negative effects of heat exposure.

31

Seasonal Effects on Multiparous Lactating Dairy Cow Behavior

Izabella M. Toledo, L.T. Casarotto and G.E. Dahl

JDS Communications, accepted.

Hypothesis

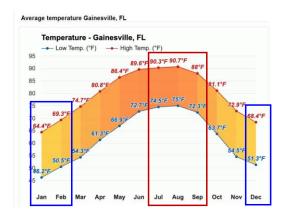
Seasonal changes will affect the behavior of multiparous lactating dairy cows housed in free-stall facilities and exposed to active cooling.

33

Objectives

To have a better understanding of how seasonal changes affect the daily activities and the behavior of multiparous dairy cows.

Design and Management


- · 34 multiparous lactating Holstein cows
- 2 Treatments:

Hot Season:

HS; July, August and September; n=19

Cool Season

CS; December, January and February; n=15

35

Design and Management

- Study Period: measurements were recorded for each cow during the first
 9 weeks of lactation during the hot and cool seasons.
- Temperature and Humidity Index, was assessed during the entire study period.

Design and Management

- · Sand bedded free stalls
- Fans over stalls
- · Soakers over feedline
- Fans on at 70° F (21.1°C)
- Soakers on 1 min every 5 min at 72° F
- Lights were on for 14h/day

37

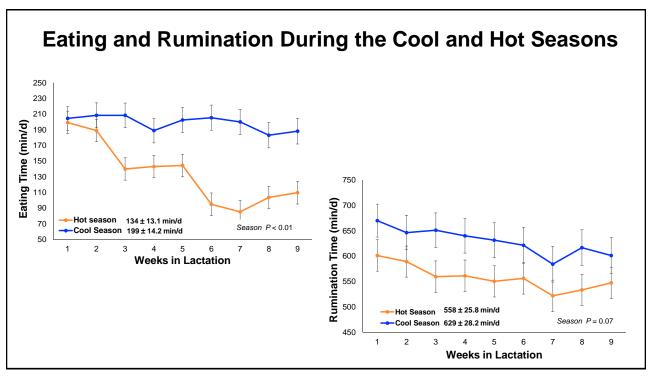
Design and Management

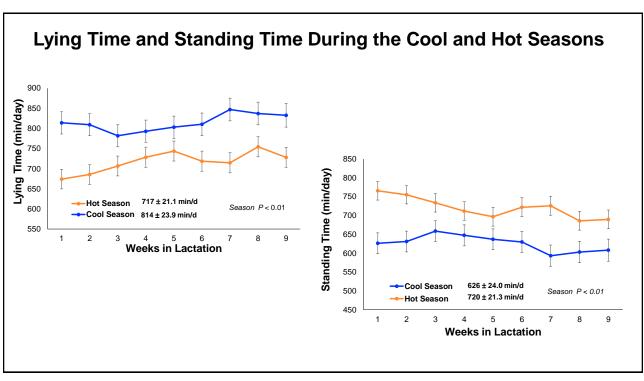
· Leg Tag:

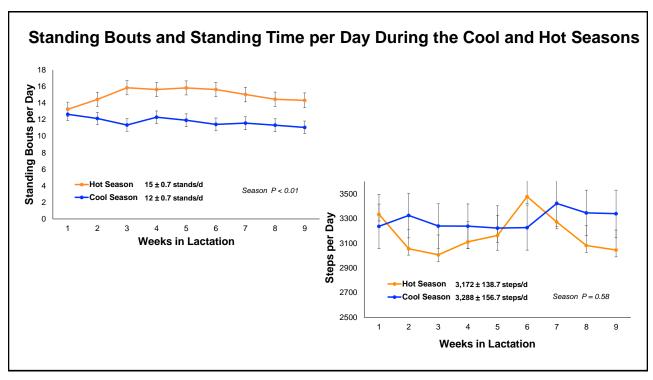
Measure lying time, standing time, walking and standing events

Neck Tag:

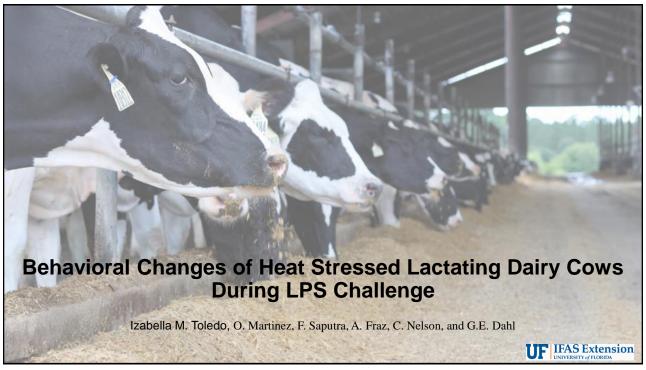
Measure eating time and rumination time


· Acclimation Period





• THI Cool Season: 54.4 • THI Hot Season: 78.2 • THI Weeks in Lactation • THI Cool Season Changes Affect Milk Production of Lactating Dairy Cows



Summary

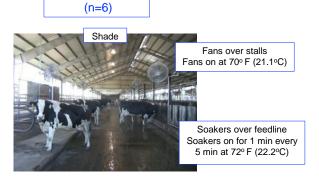
- · Seasonal changes affect milk production of multiparous dairy cows.
- Exposure to heat during lactation seems to negatively affect the behavior and the daily time budget of lactating Holstein cows even in free-stall facilities with active cooling.
- A better understanding on how different seasons affect the daily time budget of lactating dairy cows may contribute to the development of more effective management strategies to decrease the negative effects of heat exposure.

Hypothesis

Heat stress will affect the behavior of multiparous lactating dairy cows challenged with LPS.

Objective

To have a better understanding of how the development of intramammary infections affect the behavior of lactating dairy cows in heat stress conditions.

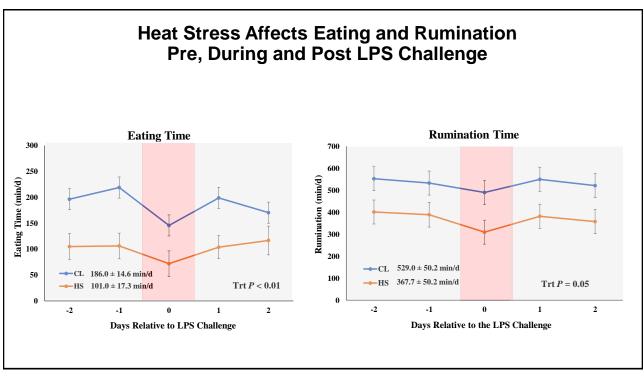

47

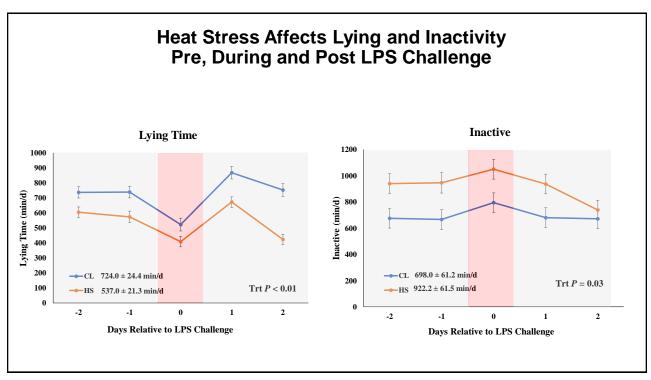
Design and Management

· 12 multiparous lactating Holstein cows


Cool Treatment

- · Sand bedded free stalls
- Temperature and Humidity Index, was assessed during the entire study period




Heat Stress Treatment (n=6)

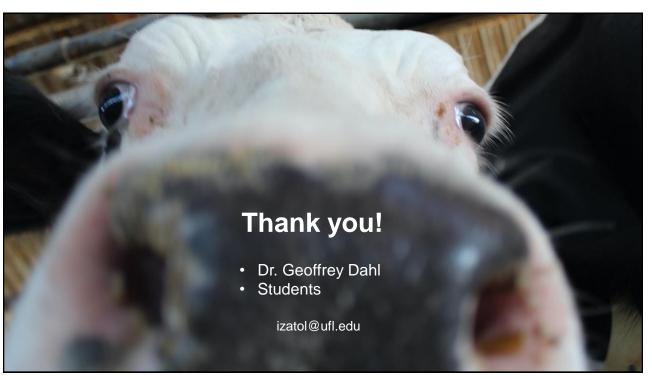
Heat Stress Does Not Affect Standing Bouts and Steps per Day

Behavior Activity	Cooled Cows	Heat Stressed Cows	P-value
Standing Bouts	13.5 ± 0.77	13 ± 0.65	0.61
Steps per Day	$2,\!716\pm142$	$2,524 \pm 123$	0.33

53

Summary

- · Exposure to heat affects the behavior of lactating dairy cows.
- Heat stress affects behavior of lactating dairy cows independently of the development of intramammary infections.
- Heat stress effects on behavior is not a good parameter to be used to monitor the development of intramammary infections.



Take Home Message

- Exposure to heat stress affects the behavior of dairy cows at different stages of the lactation cycle
- Exposure to heat during lactation negatively affect the behavior and the daily time budget of lactating Holstein cows even in free-stall facilities with active cooling.
- Insights onto heat stress effects in the daily time budget of dairy cows during different seasons and stages of the lactation cycle may contribute to the development of more effective management strategies to decrease the possible negative effects of heat exposure.

55

